OFFSET
1,2
COMMENTS
This sequence is finite since A009993 is finite with 511 nonzero terms, hence the last term is a(511) = lcm of the 511 nonzero terms of A009993.
a(511) = 8222356410...6120992000 and has 1036 digits. - Michael S. Branicky, Sep 16 2022
EXAMPLE
For n=7, the divisors of 54 are {1, 2, 3, 6, 9, 18, 27, 54} of which 7 have their digits in strictly increasing order (all except 54). No integer < 54 has 7 such divisors, so a(7) = 54.
MATHEMATICA
s[n_] := DivisorSum[n, 1 &, Less @@ IntegerDigits[#] &]; seq[len_, nmax_] := Module[{v = Table[0, {len}], n = 1, c = 0, i}, While[c < len && n < nmax, i = s[n]; If[i <= len && v[[i]] == 0, v[[i]] = n; c++]; n++]; v]; seq[25, 10^4] (* Amiram Eldar, Sep 16 2022 *)
PROG
(PARI) isok(d) = Set(d=digits(d)) == d; \\ A009993
f(n) = sumdiv(n, d, isok(d)); \\ A357171
a(n) = my(k=1); while (f(k) !=n, k++); k; \\ Michel Marcus, Sep 16 2022
(Python)
from sympy import divisors
from itertools import count, islice
def c(n): s = str(n); return s == "".join(sorted(set(s)))
def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
def agen():
n, adict = 1, dict()
for k in count(1):
fk = f(k)
if fk not in adict: adict[fk] = k
while n in adict: yield adict[n]; n += 1
print(list(islice(agen(), 37))) # Michael S. Branicky, Sep 16 2022
CROSSREFS
KEYWORD
nonn,base,fini
AUTHOR
Bernard Schott, Sep 16 2022
EXTENSIONS
More terms from Amiram Eldar, Sep 16 2022
STATUS
approved