login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355594
a(n) is the smallest integer that has exactly n alternating divisors.
6
1, 2, 4, 6, 16, 12, 24, 48, 36, 96, 72, 144, 210, 180, 420, 360, 504, 864, 630, 1080, 1512, 2160, 1260, 3150, 1890, 2520, 5040, 6300, 3780, 10080, 12600, 9450, 7560, 32760, 15120, 18900, 22680, 30240, 88830, 37800, 45360, 75600, 105840, 90720, 151200, 162540, 254520
OFFSET
1,2
COMMENTS
This sequence first differs from A005179 at index 7 where A005179(7) = 64.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..147 (first 107 terms from Robert Israel)
David A. Corneth, Some upper bounds on a(n)
FORMULA
a(n) >= A005179(n). - David A. Corneth, Jan 25 2023
EXAMPLE
16 has 5 divisors: {1, 2, 4, 8, 16} all of which are alternating integers; no positive integer smaller than 16 has five alternating divisors, hence a(5) = 16.
96 has 12 divisors: {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96}, only 24 and 48 are not alternating; no positive integer smaller than 96 has ten alternating divisors, hence a(10) = 96.
MAPLE
isalt:= proc(n) local L; option remember;
L:= convert(n, base, 10) mod 2;
L:= L[2..-1]-L[1..-2];
not member(0, L)
end proc:
N:= 50: # for a(1)..a(N)
V:= Vector(N): count:= 0:
for n from 1 while count < N do
w:= nops(select(isalt, numtheory:-divisors(n)));
if w <= N and V[w] = 0 then V[w]:= n; count:= count+1 fi
od:
convert(V, list); # Robert Israel, Jan 24 2023
MATHEMATICA
q[n_] := ! MemberQ[Differences[Mod[IntegerDigits[n], 2]], 0]; f[n_] := DivisorSum[n, 1 &, q[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[50, 10^6] (* Amiram Eldar, Jul 08 2022 *)
PROG
(PARI) is(n, d=digits(n))=for(i=2, #d, if((d[i]-d[i-1])%2==0, return(0))); 1; \\ A030141
a(n) = my(k=1); while (sumdiv(k, d, is(d)) != n, k++); k; \\ Michel Marcus, Jul 11 2022
(Python)
from itertools import count
from sympy import divisors
def A355594(n):
for m in count(1):
if sum(1 for k in divisors(m, generator=True) if all(int(a)+int(b)&1 for a, b in zip(str(k), str(k)[1:]))) == n:
return m # Chai Wah Wu, Jul 12 2022
CROSSREFS
Cf. A005179, A030141 (alternating numbers), A355593, A355595, A355596.
Similar, but with undulating divisors: A355303.
Sequence in context: A209867 A136033 A343019 * A357172 A355303 A099315
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 08 2022
EXTENSIONS
More terms from David A. Corneth, Jul 08 2022
STATUS
approved