login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355591
a(n) = (product of the first n odd primes) - (sum of the first n odd primes).
1
1, 0, 7, 90, 1129, 14976, 255199, 4849770, 111546337, 3234846488, 100280244907, 3710369067210, 152125131763369, 6541380665834736, 307444891294245379, 16294579238595021986, 961380175077106319097, 58644190679703485491136, 3929160775540133527938979
OFFSET
0,3
COMMENTS
The parity of a(n) is the opposite of the parity of n.
LINKS
FORMULA
a(n) = A070826(n+1) - A071148(n).
EXAMPLE
a(4) = (3*5*7*11) - (3+5+7+11) = 1129.
MAPLE
a:= n-> (l-> mul(i, i=l)-add(i, i=l))([ithprime(i)$i=2..n+1]):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 12 2022
MATHEMATICA
FoldList[Times, 1, p = Prime[Range[2, 20]]] - Prepend[Accumulate[p], 0] (* Amiram Eldar, Jul 14 2022 *)
PROG
(Python)
from itertools import count, islice
from sympy import nextprime
def agen():
p, s, primen = 1, 0, 2
while True:
yield p - s; primen = nextprime(primen); p *= primen; s += primen
print(list(islice(agen(), 19))) # Michael S. Branicky, Jul 12 2022
(PARI) a(n) = my(vp=primes(n+1)); vecprod(vp)/2 - vecsum(vp) + 2; \\ Michel Marcus, Jul 12 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Des MacHale and Bernard Schott, Jul 12 2022
EXTENSIONS
More terms from Michael S. Branicky, Jul 12 2022
STATUS
approved