login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243699 Number of meta-Sylvester classes of 5-multiparking functions of length n. 3
1, 1, 7, 90, 1679, 40977, 1234002, 44162294, 1829650545, 86075951647, 4530650659261, 263702502327536, 16811827814422092, 1164790943838593160, 87124861733813622130, 6995992413536990011830, 600147439879762402873285, 54768109160914827946501375, 5297131818511043862499262665 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

See Novelli-Thibon (2014) for precise definition.

LINKS

Table of n, a(n) for n=0..18.

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 28.

FORMULA

G.f.: 1/(1-x) = Sum_{n>=0} a(n) * x^n*(1-x)^n / Product_{k=1..n} (1 + 5*k*x). - Paul D. Hanna, Jun 14 2014

MATHEMATICA

a[n_] := a[n] = If[n<0, 0, Coefficient[1/(1 - x + x O[x]^n) - Sum[a[k] x^k (1-x)^k/Product[1 + 5 j x + x O[x]^n, {j, 0, k}], {k, 1, n-1}], x, n]];

Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Jul 27 2018, after Paul D. Hanna *)

PROG

(PARI) {a(n)=if(n<0, 0, polcoeff(1/(1-x+x*O(x^n)) - sum(k=1, n-1, a(k)*x^k*(1-x)^k/prod(j=0, k, 1+5*j*x+x*O(x^n))), n))}

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 14 2014

CROSSREFS

Cf. A132624, A243696, A243697, A243698.

Sequence in context: A103064 A244849 A321164 * A007820 A306137 A226624

Adjacent sequences:  A243696 A243697 A243698 * A243700 A243701 A243702

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jun 14 2014

EXTENSIONS

Offset changed to 0 by Paul D. Hanna, Jun 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 20:51 EDT 2019. Contains 325226 sequences. (Running on oeis4.)