login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243696
Number of meta-Sylvester classes of 2-multiparking functions of length n.
5
1, 1, 4, 27, 254, 3048, 44328, 755681, 14750646, 323999500, 7901623624, 211690439030, 6176393964684, 194847458672328, 6606138879434128, 239466033046020357, 9239284257332493478, 377948418993992417644, 16335430070738649950536, 743711790322786003051882
OFFSET
0,3
COMMENTS
See Novelli-Thibon (2014) for precise definition.
Sum over all Dyck paths of semilength n of products over all peaks p of (1+x_p-y_p), where x_p and y_p are the coordinates of peak p. - Alois P. Heinz, May 27 2015
LINKS
J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 28.
FORMULA
G.f.: 1/(1-x) = Sum_{n>=0} a(n) * x^n*(1-x)^n / Product_{k=1..n} (1 + 2*k*x). - Paul D. Hanna, Jun 14 2014
MAPLE
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (1+x-y), 1) +
b(x-1, y+1, true)))
end:
a:= n-> b(2*n, 0, false):
seq(a(n), n=0..25); # Alois P. Heinz, May 27 2015
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y-1, False]*If[t, 1+x-y, 1] + b[x-1, y+1, True]]]; a[n_] := b[2*n, 0, False]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff(1/(1-x+x*O(x^n)) - sum(k=1, n-1, a(k)*x^k*(1-x)^k/prod(j=0, k, 1+2*j*x+x*O(x^n))), n))}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 14 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 14 2014
EXTENSIONS
Offset changed to 0 by Paul D. Hanna, Jun 14 2014
STATUS
approved