login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243695
Number of Hyposylvester classes of 5-multiparking functions of length n.
1
1, 1, 7, 60, 579, 6017, 65732, 744264, 8656795, 102819507, 1241838271, 15205587136, 188320591092, 2354971302700, 29693879866840, 377104836064720, 4819271465838795, 61930407776801015, 799765007716515125, 10373651783800459340, 135089139660222638795
OFFSET
0,3
COMMENTS
See Novelli-Thibon (2014) for precise definition.
LINKS
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020. See Fig. 27.
Jun Yan, Results on pattern avoidance in parking functions, arXiv preprint arXiv:2404.07958 [math.CO], 2024. See Theorem 4.1.
FORMULA
a(n) = (1/n) * Sum_{k=0..n-1} 4^k * binomial(n,k) * binomial(3*n-k,2*n+1) for n > 0. - Jun Yan, Apr 12 2024
a(n) = Sum_{k=0..n} 5^k * (-4)^(n-k) * binomial(n,k) * binomial(2*n+k+1,n) / (2*n+k+1). - Alois P. Heinz, Apr 12 2024
a(n) = (-4)^n * CatalanNumber(n) * hypergeom([-n, 2*n + 1], [n + 2], 5/4). - Peter Luschny, Apr 12 2024
a(n) ~ sqrt(779 + 201*sqrt(41)) * (299 + 41^(3/2))^n / (sqrt(41*Pi) * n^(3/2) * 2^(3*n + 5/2) * 5^(n+1)). - Vaclav Kotesovec, Apr 12 2024
From Peter Bala, Sep 08 2024: (Start)
G.f. A(x) = 1 + series_reversion( x/((1 + 5*x)*(1 + x)^2) ).
A(x) = 1 + x*(5*A(x)^3 - 4*A(x)^2). (End)
MAPLE
a := proc(n) option remember; if n <= 1 then return 1 fi;
(a(n - 2)*(-10496*n^3 + 39552*n^2 - 41344*n + 8448) + a(n - 1)*(12259*n^3 -
27807*n^2 + 19058*n - 3960)) / (820*n^3 - 630*n^2 - 520*n) end:
seq(a(n), n = 0..20); # Peter Luschny, Apr 13 2024
MATHEMATICA
a[n_] := (-4)^n * CatalanNumber[n] Hypergeometric2F1[-n, 2 n + 1, n + 2, 5/4];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 12 2024 *)
CROSSREFS
Sequence in context: A290756 A024090 A241770 * A210988 A222651 A287689
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 14 2014
EXTENSIONS
More terms from Jun Yan, Apr 12 2024
STATUS
approved