The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290756 Number of (non-null) connected induced subgraphs of the complete tripartite graph K_{n,n,n}. 1
 7, 60, 499, 4062, 32689, 261972, 2096791, 16776474, 134216221, 1073738784, 8589928483, 68719464486, 549755789353, 4398046461996, 35184371990575, 281474976514098, 2251799813292085, 18014398508695608, 144115188074283067, 1152921504603701310 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The only disconnected induced subgraphs are those constructed from the vertices of a single partition. - Andrew Howroyd, Aug 10 2017 LINKS Table of n, a(n) for n=1..20. Eric Weisstein's World of Mathematics, Complete Tripartite Graph Eric Weisstein's World of Mathematics, Connected Graph Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph Index entries for linear recurrences with constant coefficients, signature (12, -37, 42, -16). FORMULA a(n) = 8^n - 3*2^n + 3*n + 2. - Andrew Howroyd, Aug 10 2017 a(n) = 12*a(n-1) - 37*a(n-2) + 42*a(n-3) - 16*a(n-4). G.f.: (x (7 - 24 x + 38 x^2))/((-1 + x)^2 (1 - 10 x + 16 x^2)). MATHEMATICA Table[8^n - 3 2^n + 3 n + 2, {n, 20}] LinearRecurrence[{12, -37, 42, -16}, {7, 60, 499, 4062}, 20] CoefficientList[Series[(7 - 24 x + 38 x^2)/((-1 + x)^2 (1 - 10 x + 16 x^2)), {x, 0, 20}], x] PROG (PARI) a(n) = 8^n - 3*2^n + 3*n + 2; \\ Andrew Howroyd, Aug 10 2017 CROSSREFS Cf. A286191. Sequence in context: A366613 A303120 A015570 * A024090 A241770 A243695 Adjacent sequences: A290753 A290754 A290755 * A290757 A290758 A290759 KEYWORD nonn,easy AUTHOR Eric W. Weisstein, Aug 09 2017 EXTENSIONS a(7)-a(20) from Andrew Howroyd, Aug 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 08:27 EDT 2024. Contains 371698 sequences. (Running on oeis4.)