login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303120
Total area of all rectangles of size p X q such that p + q = n^2 and p <= q.
1
0, 7, 60, 372, 1300, 4047, 9800, 22352, 44280, 84575, 147620, 251412, 402220, 632247, 949200, 1406272, 2011440, 2847447, 3920460, 5353300, 7147140, 9477567, 12336280, 15966672, 20345000, 25800047, 32284980, 40234292, 49568540, 60851175, 73958560, 89609472
OFFSET
1,2
COMMENTS
Sum of all the products formed using the corresponding largest and smallest parts of each partition of n^2 into two parts. - Wesley Ivan Hurt, Mar 26 2019
FORMULA
a(n) = Sum_{i=1..floor(n^2/2)} i * (n^2 - i).
Conjectures from Colin Barker, Apr 19 2018 and Mar 19 2019: (Start)
G.f.: x^2*(7 + 46*x + 224*x^2 + 386*x^3 + 594*x^4 + 386*x^5 + 224*x^6 + 46*x^7 + 7*x^8) / ((1 - x)^7*(1 + x)^5).
a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12) for n > 12.
a(n) = (n^2*(-4 + 3*(1+(-1)^n)*n^2 + 4*n^4)) / 48.
(End)
EXAMPLE
a(3) = 60; The rectangles are 8 X 1, 7 X 2, 6 X 3 and 5 X 4. The total area is then 8*1 + 7*2 + 6*3 + 5*4 = 60.
a(4) = 372; The rectangles are 15 X 1, 14 X 2, 13 X 3, 12 X 4, 11 X 5, 10 X 6, 9 X 7 and 8 X 8. The total area of the rectangles is then 15*1 + 14*2 + 13*3 + 12*4 + 11*5 + 10*6 + 9*7 + 8*8 = 372.
MAPLE
A303120:=n->add(i*(n^2-i), i=1..floor(n^2/2)): seq(A303120(n), n=1..50); # Wesley Ivan Hurt, Mar 12 2019
MATHEMATICA
Table[Sum[i*(n^2 - i), {i, Floor[n^2/2]}], {n, 50}]
PROG
(Magma) [&+[i*(n^2-i): i in [0..Floor(n^2/2)]]: n in [1..35]]; // Vincenzo Librandi, Apr 19 2018
(PARI) a(n) = sum(i=1, n^2\2, i*(n^2-i)); \\ Michel Marcus, Mar 13 2019
(GAP) List([1..35], n->Sum([1..Int(n^2/2)], i->i*(n^2-i))); # Muniru A Asiru, Mar 15 2019
CROSSREFS
Sequence in context: A358132 A063969 A366613 * A015570 A290756 A024090
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 18 2018
STATUS
approved