login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358132
Numbers k such that there exists a pair of primes (p,q) with p+q = k such that p*q + k, p*q - k, p*q + A001414(k) and p*q - A001414(k) are all prime.
1
7, 60, 72, 114, 186, 378, 474, 480, 762, 884, 1266, 1338, 1374, 2004, 2742, 3012, 3234, 3246, 3276, 3282, 3618, 3936, 4230, 4620, 5154, 5514, 5544, 5724, 5886, 6006, 6054, 6084, 6234, 6306, 6414, 6510, 6522, 6762, 6774, 6858, 7410, 7422, 7764, 8286, 8394, 8538, 8688, 8826, 8892, 8916, 9186, 9264
OFFSET
1,1
COMMENTS
Most terms == 0 (mod 6), but there are terms such as 7 and 15585 where p = 2, and
884 and 10010 where p = 3.
Conjecture: the sequence includes all sufficiently large k such that both k and A001414(k) are divisible by 6.
LINKS
EXAMPLE
a(5) = 186 is a term because p = 89 and q = 97 are primes with 89 + 97 = 186, 186 = 2*3*31 so A001414(186) = 2+3+31 = 36, and 89*97 + 186 = 8819, 89*97 - 186 = 8447, 89*97 + 36 = 8669 and 89*97 - 36 = 8597 are all primes.
MAPLE
spf:= proc(n) local t; add(t[1]*t[2], t=ifactors(n)[2]) end proc:
filter:= proc(k) local p, q, pq, s;
s:= spf(k);
if k::odd then
q:= k-2;
return (s::odd and isprime(q) and isprime(2*q+s) and isprime(2*q-s) and isprime(2*q+k) and isprime(2*q-k))
fi;
if k mod 6 <> 0 then
q:= k-3;
return (isprime(q) and isprime(3*q+s) and isprime(3*q-s) and isprime(3*q+k) and isprime(3*q-k))
fi;
p:= 2;
do
p:= nextprime(p);
q:= k-p;
if p > q then return false fi;
pq:= p*q;
if isprime(q) and isprime(pq+k) and isprime(pq-k) and isprime(pq+s) and isprime(pq-s) then return true fi
od
end proc:
select(filter, [$1..10000]);
CROSSREFS
Cf. A001414.
Sequence in context: A203174 A183260 A285227 * A063969 A366613 A303120
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 31 2022
STATUS
approved