login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243697
Number of meta-Sylvester classes of 3-multiparking functions of length n.
3
1, 1, 5, 44, 551, 8919, 176634, 4130208, 111222029, 3386390387, 114938069867, 4300300340056, 175745611297708, 7786523264786248, 371635506967477674, 19004259907335519264, 1036363461255181310601, 60024383356961580954471, 3679068900776781256346115
OFFSET
0,3
COMMENTS
See Novelli-Thibon (2014) for precise definition.
LINKS
J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 28.
FORMULA
G.f.: 1/(1-x) = Sum_{n>=0} a(n) * x^n*(1-x)^n / Product_{k=1..n} (1 + 3*k*x). - Paul D. Hanna, Jun 14 2014
MATHEMATICA
a[n_] := a[n] = If[n<0, 0, Coefficient[1/(1 - x + x O[x]^n) - Sum[a[k] x^k (1-x)^k/Product[1 + 3j x + x O[x]^n, {j, 0, k}], {k, 1, n-1}], x, n]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 27 2018, from PARI *)
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff(1/(1-x+x*O(x^n)) - sum(k=1, n-1, a(k)*x^k*(1-x)^k/prod(j=0, k, 1+3*j*x+x*O(x^n))), n))}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 14 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 14 2014
EXTENSIONS
Offset changed to 0 by Paul D. Hanna, Jun 14 2014
STATUS
approved