login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195242 G.f.: Sum_{n>=0} n^n*x^n/(1 - n*x)^n. 2
1, 1, 5, 44, 548, 8808, 173352, 4036288, 108507968, 3307368320, 112703108480, 4245680193024, 175200825481728, 7859411394860032, 380810598813553664, 19819617775693512704, 1102737068471914938368, 65316500202537025634304, 4103422475123595857854464 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare g.f. to the identity (cf. A001710):

Sum_{n>=0} n^n*x^n/(1 + n*x)^n = 1 + (1/2)*Sum_{n>=1} (n+1)!*x^n.

LINKS

Table of n, a(n) for n=0..18.

FORMULA

a(n) = Sum_{k=0..n} C(n-1,k)*(k+1)^n.

a(n) = (n+1)!/2 + 2*Sum_{k=0..[n/2]} C(n-1,n-2*k)*(n-2*k+1)^n for n>0 with a(0)=1.

a(n) ~ n^n * r^(n+3/2) / (exp(n) * (1-r)^n), where r = 1/(1+LambertW(exp(-1))) = 0.78218829428019990122... . - Vaclav Kotesovec, May 14 2014

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(-k,-n)*k^n. Cf. A053506. - Peter Luschny, Apr 11 2016

EXAMPLE

G.f.: A(x) = 1 + x + 5*x^2 + 44*x^3 + 548*x^4 + 8808*x^5 + 173352*x^6 +...

where

A(x) = 1 + x/(1-x) + 2^2*x^2/(1-2*x)^2 + 3^3*x^3/(1-3*x)^3 + 4^4*x^4/(1-4*x)^4 +...

MATHEMATICA

a[n_] := Sum[Binomial[n - 1, k] (k + 1)^n, {k, 0, n}];

Table[a[n], {n, 0, 18}] (* Jean-Fran├žois Alcover, Jun 26 2019 *)

PROG

(PARI) {a(n)=polcoeff(sum(m=0, n, m^m*x^m/(1-m*x+x*O(x^n))^m), n)}

(PARI) {a(n)=sum(k=0, n, binomial(n-1, k)*(k+1)^n)}

(PARI) {a(n)=(n+1)!/2 + 2*sum(k=0, n\2, binomial(n-1, n-2*k)*(n-2*k+1)^n)}

CROSSREFS

Cf. A001710, A053506, A242449.

Sequence in context: A232192 A249791 A215648 * A243697 A106273 A052803

Adjacent sequences:  A195239 A195240 A195241 * A195243 A195244 A195245

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 09:35 EST 2020. Contains 338923 sequences. (Running on oeis4.)