login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215648 G.f. satisfies: A(x) = 1 + x*A(x)^2 + 3*x^2*A'(x)*A(x). 1
1, 1, 5, 44, 539, 8337, 154632, 3332640, 81711479, 2244563555, 68272834865, 2278102125040, 82749748994500, 3250966816344604, 137371215935579892, 6213234210869600376, 299527133488944917631, 15332761842086151881175, 830648056455231849827895 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..378

FORMULA

G.f. satisfies: A(x) = 1 + x*[d/dx x*A(x)^3]/A(x).

a(n) ~ n! * 3^(n+1) / (Pi*exp(1)). - Vaclav Kotesovec, Aug 24 2017

EXAMPLE

G.f.: A(x) = 1 + x + 5*x^2 + 44*x^3 + 539*x^4 + 8337*x^5 + 154632*x^6 +...

Related expansions:

A(x)^2 = 1 + 2*x + 11*x^2 + 98*x^3 + 1191*x^4 + 18192*x^5 + 333264*x^6 +...

A'(x)*A(x) = 1 + 11*x + 147*x^2 + 2382*x^3 + 45480*x^4 + 999792*x^5 +...

where A(x) = 1 + x*A(x)^2 + 3*x^2*A'(x)*A(x).

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*deriv(x*A^3)/(A+x*O(x^n))); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A112936, A112938, A218168.

Sequence in context: A301434 A232192 A249791 * A195242 A243697 A106273

Adjacent sequences:  A215645 A215646 A215647 * A215649 A215650 A215651

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 09:10 EST 2020. Contains 338921 sequences. (Running on oeis4.)