login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052803
Expansion of e.g.f. (-1 + sqrt(1 + 4*log(1-x)))/(2*log(1-x)).
9
1, 1, 5, 44, 566, 9674, 207166, 5343456, 161405016, 5591409720, 218592034584, 9521490534720, 457329182411856, 24014921905589328, 1368772939062117936, 84161443919543331840, 5553011951023694408064, 391360838810043628416384, 29342876851060951124158848
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
LINKS
FORMULA
E.g.f.: (1/2)/log(-1/(-1+x))*(1-(1-4*log(-1/(-1+x)))^(1/2)).
a(n) ~ 2*sqrt(2) * n^(n-1) / (exp(3*n/4) * (exp(1/4)-1)^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
a(n) = Sum_{k=0..n} (2k)!/(k+1)! * |Stirling1(n,k)|. - Michael D. Weiner, Dec 23 2014
E.g.f.: 1/(1 + log(1-x)/(1 + log(1-x)/(1 + log(1-x)/(1 + log(1-x)/(1 + ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2017
MAPLE
spec := [S, {C=Cycle(Z), S=Sequence(B), B=Prod(C, S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[-1/(2*Log[1-x]) * (1-(1+4*Log[1-x])^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f., Vaclav Kotesovec, Sep 30 2013
STATUS
approved