OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..200
FORMULA
E.g.f.: hypergeom([1/2], [2], -4*log(1-x)) = 1/(1-x)^2*(BesselI(0, 2*log(1-x))+BesselI(1, 2*log(1-x))).
a(n)=(1/(2*pi))*int(product(x+k,k,0,n-1)*sqrt((4-x)/x),x,0,4) (moment representation). [Paul Barry, Jul 26 2010]
MATHEMATICA
CoefficientList[Series[(BesselI[0, 2*Log[1-x]] + BesselI[1, 2*Log[1-x]]) / (1-x)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Mar 02 2014 *)
Table[Sum[Abs[StirlingS1[n, k]]*Binomial[2*k, k]/(k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 02 2014 *)
PROG
(PARI) a(n)=sum(k=0, n, abs(stirling(n, k, 1)) * binomial(2*k, k)/(k+1) ); \\ Joerg Arndt, Mar 02 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 12 2003
STATUS
approved