login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086659
T(n,k) counts the set partitions of n containing k-1 blocks of length 1.
4
1, 1, 3, 4, 4, 6, 11, 20, 10, 10, 41, 66, 60, 20, 15, 162, 287, 231, 140, 35, 21, 715, 1296, 1148, 616, 280, 56, 28, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 98253, 194942, 188375, 117975, 53460, 18942, 5082, 1320, 165, 55
OFFSET
2,3
LINKS
FORMULA
E.g.f.: exp(x*y)*(exp(exp(x)-1-x)-1). - Vladeta Jovovic, Jul 28 2003
EXAMPLE
The 15 set partitions of {1,2,3,4} consist of 4 partitions with 0 blocks of length 1 : {{1,2,3,4}},{{1,2},{3,4}},{{1,3},{2,4}},{{1,4},{2,3}},
4 partitions with 1 block of length 1 : {{1},{2,3,4}},{{1,2,3},{4}},{{1,2,4},{3}},{{1,3,4},{2}}
6 partitions with 2 blocks of length 1 : {{1},{2},{3,4}},{{1},{2,3},{4}},{{1},{2,4},{3}},{{1,2},{3},{4}},{{1,3},{2},{4}},{{1,4},{2},{3}}.
(There are no partitions with n-1 blocks of length 1 and 1 with n of them)
1;
1, 3;
4, 4, 6;
11, 20, 10, 10;
41, 66, 60, 20, 15;
162, 287, 231, 140, 35, 21;
...
MAPLE
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*`if`(i=1, x^j, 1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n-2))(b(n$2)):
seq(T(n), n=2..16); # Alois P. Heinz, Mar 08 2015
MATHEMATICA
Table[Count[Count[ #, {_Integer}]&/@SetPartitions[n], # ]&/@Range[0, n-2], {n, 2, 10}]
CROSSREFS
Row sums = Bell[n]-1 (A058692), first column=A000296, main diagonal = triangular numbers A000217.
Sequence in context: A100692 A360724 A089640 * A265887 A345264 A344465
KEYWORD
nonn,tabl,easy
AUTHOR
Wouter Meeussen, Jul 27 2003
EXTENSIONS
More terms from Vladeta Jovovic, Jul 28 2003
STATUS
approved