login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) counts the set partitions of n containing k-1 blocks of length 1.
4

%I #16 Jan 05 2022 18:16:14

%S 1,1,3,4,4,6,11,20,10,10,41,66,60,20,15,162,287,231,140,35,21,715,

%T 1296,1148,616,280,56,28,3425,6435,5832,3444,1386,504,84,36,17722,

%U 34250,32175,19440,8610,2772,840,120,45,98253,194942,188375,117975,53460,18942,5082,1320,165,55

%N T(n,k) counts the set partitions of n containing k-1 blocks of length 1.

%H Alois P. Heinz, <a href="/A086659/b086659.txt">Rows n = 2..142, flattened</a>

%F E.g.f.: exp(x*y)*(exp(exp(x)-1-x)-1). - _Vladeta Jovovic_, Jul 28 2003

%e The 15 set partitions of {1,2,3,4} consist of 4 partitions with 0 blocks of length 1 : {{1,2,3,4}},{{1,2},{3,4}},{{1,3},{2,4}},{{1,4},{2,3}},

%e 4 partitions with 1 block of length 1 : {{1},{2,3,4}},{{1,2,3},{4}},{{1,2,4},{3}},{{1,3,4},{2}}

%e 6 partitions with 2 blocks of length 1 : {{1},{2},{3,4}},{{1},{2,3},{4}},{{1},{2,4},{3}},{{1,2},{3},{4}},{{1,3},{2},{4}},{{1,4},{2},{3}}.

%e (There are no partitions with n-1 blocks of length 1 and 1 with n of them)

%e 1;

%e 1, 3;

%e 4, 4, 6;

%e 11, 20, 10, 10;

%e 41, 66, 60, 20, 15;

%e 162, 287, 231, 140, 35, 21;

%e ...

%p with(combinat):

%p b:= proc(n, i) option remember; expand(`if`(n=0, 1,

%p `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*

%p b(n-i*j, i-1)*`if`(i=1, x^j, 1), j=0..n/i))))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n-2))(b(n$2)):

%p seq(T(n), n=2..16); # _Alois P. Heinz_, Mar 08 2015

%t Table[Count[Count[ #, {_Integer}]&/@SetPartitions[n], # ]&/@Range[0, n-2], {n, 2, 10}]

%Y Row sums = Bell[n]-1 (A058692), first column=A000296, main diagonal = triangular numbers A000217.

%K nonn,tabl,easy

%O 2,3

%A _Wouter Meeussen_, Jul 27 2003

%E More terms from _Vladeta Jovovic_, Jul 28 2003