login
A265887
T(n,k)=Number of nXk 0..2 arrays with the sum of the absolute differences of each element with its horizontal and vertical neighbors equal to the number of neighbors.
2
3, 4, 4, 6, 12, 6, 8, 16, 16, 8, 12, 32, 68, 32, 12, 16, 64, 128, 128, 64, 16, 24, 128, 384, 664, 384, 128, 24, 32, 256, 1024, 2048, 2048, 1024, 256, 32, 48, 512, 3072, 8192, 13672, 8192, 3072, 512, 48, 64, 1024, 8192, 32768, 65536, 65536, 32768, 8192, 1024, 64, 96
OFFSET
1,1
COMMENTS
Table starts
..3....4.....6.......8.......12.........16..........24............32
..4...12....16......32.......64........128.........256...........512
..6...16....68.....128......384.......1024........3072..........8192
..8...32...128.....664.....2048.......8192.......32768........131072
.12...64...384....2048....13672......65536......393216.......2097152
.16..128..1024....8192....65536.....560512.....4194304......33554432
.24..256..3072...32768...393216....4194304....51483264.....536870912
.32..512..8192..131072..2097152...33554432...536870912....8726974464
.48.1024.24576..524288.12582912..268435456..6442450944..137438953472
.64.2048.65536.2097152.67108864.2147483648.68719476736.2199023255552
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-2)
k=2: a(n) = 2*a(n-1) for n>3
k=3: a(n) = 8*a(n-2) for n>5
k=4: a(n) = 4*a(n-1) for n>5
k=5: a(n) = 32*a(n-2) for n>7
k=6: a(n) = 8*a(n-1) for n>7
k=7: a(n) = 128*a(n-2) for n>9
EXAMPLE
Some solutions for n=4 k=4
..2..1..2..1....0..0..1..0....1..2..1..0....1..2..1..2....2..1..2..1
..1..2..1..2....2..2..2..1....0..1..2..1....0..1..0..1....1..2..1..0
..2..1..2..1....1..0..0..2....1..2..1..2....1..2..1..0....0..1..2..1
..1..2..1..0....2..1..0..2....0..1..0..1....2..1..2..1....1..2..1..0
CROSSREFS
Column 1 is A029744(n+2).
Sequence in context: A360724 A089640 A086659 * A345264 A344465 A008473
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 17 2015
STATUS
approved