login
A265888
a(n) = n + floor(n/4)*(-1)^(n mod 4).
4
0, 1, 2, 3, 5, 4, 7, 6, 10, 7, 12, 9, 15, 10, 17, 12, 20, 13, 22, 15, 25, 16, 27, 18, 30, 19, 32, 21, 35, 22, 37, 24, 40, 25, 42, 27, 45, 28, 47, 30, 50, 31, 52, 33, 55, 34, 57, 36, 60, 37, 62, 39, 65, 40, 67, 42, 70, 43, 72, 45, 75, 46, 77, 48, 80, 49, 82, 51, 85, 52, 87
OFFSET
0,3
COMMENTS
This sequence does not include the numbers of the type 3*A047202(n)+2.
a(n) = n + floor(n/4)*(-1)^(n mod 2). - Chai Wah Wu, Jan 29 2023
FORMULA
G.f.: x*(1 + 2*x + 2*x^2 + 3*x^3)/((1 + x^2)*(1 - x^2)^2).
a(n) = a(n-2) + a(n-4) - a(n-6) for n>5.
a(n+1) + a(n) = A047624(n+1).
a(4*k+r) = (4+(-1)^r)*k + r mod 3, where r = 0..3.
MATHEMATICA
Table[n + Floor[n/4] (-1)^Mod[n, 4], {n, 0, 70}]
LinearRecurrence[{0, 1, 0, 1, 0, -1}, {0, 1, 2, 3, 5, 4}, 80]
PROG
(Sage) [n+floor(n/4)*(-1)^mod(n, 4) for n in (0..70)]
(Magma) [n+Floor(n/4)*(-1)^(n mod 4): n in [0..70]];
(PARI) x='x+O('x^100); concat(0, Vec(x*(1+2*x+2*x^2+3*x^3)/((1+x^2)*(1- x^2)^2))) \\ Altug Alkan, Dec 22 2015
(Python)
def A265888(n): return n+(-(n>>2) if n&1 else n>>2) # Chai Wah Wu, Jan 29 2023
CROSSREFS
Cf. A064455: n+floor(n/2)*(-1)^(n mod 2).
Cf. A265667: n+floor(n/3)*(-1)^(n mod 3).
Cf. A265734: n+floor(n/5)*(-1)^(n mod 5).
Sequence in context: A255558 A072062 A002192 * A340709 A095721 A072061
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 18 2015
STATUS
approved