login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340709
Let k = n/2 + floor(n/4) if n is even, otherwise (3n+1)/2; then a(n) = A093545(k).
1
0, 1, 2, 3, 5, 4, 7, 6, 10, 8, 12, 9, 15, 11, 17, 13, 20, 14, 22, 16, 25, 18, 27, 19, 30, 21, 32, 23, 35, 24, 37, 26, 40, 28, 42, 29, 45, 31, 47, 33, 50, 34, 52, 36, 55, 38, 57, 39, 60, 41, 62, 43, 65, 44, 67, 46, 70, 48, 72, 49, 75, 51, 77, 53, 80, 54, 82, 56, 85, 58, 87
OFFSET
0,3
COMMENTS
This is a permutations of the nonnegative integers.
A093545 is the inverse of A340615.
Some of the cycles of this permutation are: (0),(1),(2),(3),(5 4),(7 6),(10 12 15 13 11 9 8),(17 14),(20 25 21 18 22 27 23 19 16),... .
A340615 and A342131 are permutations, constructed by a small modification of Collatz function (A014682). This sequence relates these permutations which each other: A340615(a(n)) = A342131(n).
FORMULA
a(4*m) = 5*m.
a(2+4*m) = 2+5*m.
a(1+6*m) = 1+5*m.
a(3+6*m) = 3+5*m.
a(4+6*m) = 4+5*m.
a(n) = -2*a(n-1) - 3*a(n-2) - 4*a(n-3) - 4*a(n-4) - 4*a(n-5) - 3*a(n-6) - 2*a(n-7) - a(n-8) + 25n - 101 for n >= 8.
a(n) = A093545(A342131(n)).
G.f.: x*(1 + 2*x + 3*x^2 + 5*x^3 + 3*x^4 + 5*x^5 + 2*x^6 + 3*x^7 + x^8)/(1 - x^4 - x^6 + x^10). - Stefano Spezia, Mar 01 2021
PROG
(MATLAB)
function a = A340709(max_n)
for n = 1:max_n*10
k = (n-1)+floor(((n-1)+1)/5);
m = n-1;
if floor(k/2) == k/2
A340615(n) = k/2;
else
A340615(n) = (k*3+1)/2;
end
if floor(m/2) == m/2
b(n) = m/2+floor(m/4);
else
b(n) = (m*3+1)/2;
end
end
for n = 1:(length(A340615)/10)
a(n) = find(A340615==b(n))-1;
end
end
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Thomas Scheuerle, Jan 16 2021
STATUS
approved