login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let k = n/2 + floor(n/4) if n is even, otherwise (3n+1)/2; then a(n) = A093545(k).
1

%I #28 Oct 31 2022 05:55:10

%S 0,1,2,3,5,4,7,6,10,8,12,9,15,11,17,13,20,14,22,16,25,18,27,19,30,21,

%T 32,23,35,24,37,26,40,28,42,29,45,31,47,33,50,34,52,36,55,38,57,39,60,

%U 41,62,43,65,44,67,46,70,48,72,49,75,51,77,53,80,54,82,56,85,58,87

%N Let k = n/2 + floor(n/4) if n is even, otherwise (3n+1)/2; then a(n) = A093545(k).

%C This is a permutations of the nonnegative integers.

%C A093545 is the inverse of A340615.

%C Some of the cycles of this permutation are: (0),(1),(2),(3),(5 4),(7 6),(10 12 15 13 11 9 8),(17 14),(20 25 21 18 22 27 23 19 16),... .

%C A340615 and A342131 are permutations, constructed by a small modification of Collatz function (A014682). This sequence relates these permutations which each other: A340615(a(n)) = A342131(n).

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the nonnegative integers.</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1,0,1,0,0,0,-1).

%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem.</a>

%F a(4*m) = 5*m.

%F a(2+4*m) = 2+5*m.

%F a(1+6*m) = 1+5*m.

%F a(3+6*m) = 3+5*m.

%F a(4+6*m) = 4+5*m.

%F a(n) = -2*a(n-1) - 3*a(n-2) - 4*a(n-3) - 4*a(n-4) - 4*a(n-5) - 3*a(n-6) - 2*a(n-7) - a(n-8) + 25n - 101 for n >= 8.

%F a(n) = A093545(A342131(n)).

%F G.f.: x*(1 + 2*x + 3*x^2 + 5*x^3 + 3*x^4 + 5*x^5 + 2*x^6 + 3*x^7 + x^8)/(1 - x^4 - x^6 + x^10). - _Stefano Spezia_, Mar 01 2021

%o (MATLAB)

%o function a = A340709(max_n)

%o for n = 1:max_n*10

%o k = (n-1)+floor(((n-1)+1)/5);

%o m = n-1;

%o if floor(k/2) == k/2

%o A340615(n) = k/2;

%o else

%o A340615(n) = (k*3+1)/2;

%o end

%o if floor(m/2) == m/2

%o b(n) = m/2+floor(m/4);

%o else

%o b(n) = (m*3+1)/2;

%o end

%o end

%o for n = 1:(length(A340615)/10)

%o a(n) = find(A340615==b(n))-1;

%o end

%o end

%Y Cf. A014682, A340615, A093545, A342131.

%K nonn,easy

%O 0,3

%A _Thomas Scheuerle_, Jan 16 2021