login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342131
a(n) = n/2 + floor(n/4) if n is even, otherwise (3*n+1)/2.
3
0, 2, 1, 5, 3, 8, 4, 11, 6, 14, 7, 17, 9, 20, 10, 23, 12, 26, 13, 29, 15, 32, 16, 35, 18, 38, 19, 41, 21, 44, 22, 47, 24, 50, 25, 53, 27, 56, 28, 59, 30, 62, 31, 65, 33, 68, 34, 71, 36, 74, 37, 77, 39, 80, 40, 83, 42, 86, 43, 89, 45, 92, 46, 95, 48, 98, 49, 101, 51, 104
OFFSET
0,2
COMMENTS
A permutation of the nonnegative integers related to the Collatz function (A014682).
Interspersion of A032766 and A016789. - Michel Marcus, Mar 04 2021
FORMULA
a(n) = 9*n - 2*a(n-1) - 2*a(n-2) - 2*a(n-3) - a(n-4) - 17 for n >= 4.
a(n) = a(n-2) + a(n-4) - a(n-6).
a(n) = A006368(n+1) - 1.
G.f.: (x^4+2*x^3+3*x^2+x+2)*x/((x^2+1)*(x-1)^2*(x+1)^2). - Alois P. Heinz, Mar 01 2021
E.g.f.: (cos(x) + (6*x - 1)*cosh(x) + (2 + 3*x)*sinh(x))/4. - Stefano Spezia, Mar 02 2021
From Bruno Berselli, Mar 05 2021: (Start)
a(n) = (12*n + 4 - (3*n + 3 - (-1)^(n/2))*(1 + (-1)^n))/8. Therefore:
a(4*k) = 3*k;
a(4*k+1) = 6*k + 2;
a(4*k+2) = 3*k + 1;
a(4*k+3) = 6*k + 5. (End)
MATHEMATICA
a[n_] := If[EvenQ[n], n/2 + Floor[n/4], (3*n + 1)/2]; Array[a, 100, 0] (* Amiram Eldar, Mar 03 2021 *)
Table[(12 n + 4 - (3 n + 3 - (-1)^(n/2)) (1 + (-1)^n))/8, {n, 0, 70}] (* Bruno Berselli, Mar 05 2021 *)
PROG
(MATLAB)
function [a] = A342131(max_n)
for n = 1:max_n
m = n-1;
if floor(m/2) == m/2
a(n) = (m/2)+floor(m/4);
else
a(n) = (m*3+1)/2;
end
end
end
(PARI) a(n) = if (n%2, (3*n+1)/2, n/2 + n\4); \\ Michel Marcus, Mar 04 2021
(Magma) &cat [[3*k, 6*k+2, 3*k+1, 6*k+5]: k in [0..20]] // Bruno Berselli, Mar 05 2021
(Python)
def A342131(n): return (3*n+1)//2 if n % 2 else n//2+n//4 # Chai Wah Wu, Mar 05 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Thomas Scheuerle, Mar 01 2021
STATUS
approved