login
A265734
Permutation of nonnegative integers: a(n) = n + floor(n/5)*(-1)^(n mod 5).
6
0, 1, 2, 3, 4, 6, 5, 8, 7, 10, 12, 9, 14, 11, 16, 18, 13, 20, 15, 22, 24, 17, 26, 19, 28, 30, 21, 32, 23, 34, 36, 25, 38, 27, 40, 42, 29, 44, 31, 46, 48, 33, 50, 35, 52, 54, 37, 56, 39, 58, 60, 41, 62, 43, 64, 66, 45, 68, 47, 70, 72, 49, 74, 51, 76, 78, 53, 80
OFFSET
0,3
FORMULA
G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 6*x^4 + 3*x^5 + 4*x^6 + x^7 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = 2*a(n-5) - a(n-10).
a(5*k+r) = (5+(-1)^r)*k + r, where r=0..4.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi*(1/(2*sqrt(2))-1/(3*sqrt(3))) + log(2)/6. - _Amiram Eldar_, Mar 30 2023
EXAMPLE
------------------------------------------------------------------------
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...
+ + + + + + + + + + + + + + + + + + +
0, 0, 0, 0, 0, 1, -1, 1, -1, 1, 2, -2, 2, -2, 2, 3, -3, 3, -3, ...
------------------------------------------------------------------------
0, 1, 2, 3, 4, 6, 5, 8, 7, 10, 12, 9, 14, 11, 16, 18, 13, 20, 15, ...
------------------------------------------------------------------------
MATHEMATICA
Table[n + Floor[n/5] (-1)^Mod[n, 5], {n, 0, 80}]
PROG
(Sage) [n+floor(n/5)*(-1)^mod(n, 5) for n in (0..80)]
(Magma) [n+Floor(n/5)*(-1)^(n mod 5): n in [0..80]];
CROSSREFS
Cf. A001477.
Cf. A064455: n+floor(n/2)*(-1)^(n mod 2).
Cf. A265667: n+floor(n/3)*(-1)^(n mod 3).
Cf. A265888: n+floor(n/4)*(-1)^(n mod 4)
Sequence in context: A285039 A260307 A285041 * A299759 A372030 A232560
KEYWORD
nonn,easy
AUTHOR
_Bruno Berselli_, Dec 15 2015 - based on an idea by _Paul Curtz_.
STATUS
approved