login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265735
Integers in the interval [Pi*k - 1/k, Pi*k + 1/k] for some k > 0.
5
3, 4, 6, 19, 22, 44, 66, 88, 333, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 3550, 3905, 4260, 4615, 4970, 5325, 5680, 6035, 103993, 104348, 208341, 312689, 521030, 833719, 1146408, 2292816, 4272943, 5419351, 10838702, 16258053, 80143857, 85563208
OFFSET
1,1
COMMENTS
Conjecture: the sequence is infinite.
See the reference for a similar problem with Fibonacci numbers.
For k > 1, the interval [Pi*k - 1/k, Pi*k + 1/k] contains exactly one integer.
The corresponding integers k are 1, 2, 6, 7, 14, 21, 28,...(see A265739).
We observe two properties:
(1) a(n) = m*a(n-m+1) for some n, m=2,3,4.
Examples:
m = 2 => a(7)=2*a(6), a(11)=2*a(10), a(15)=2*a(14), a(20)=2*a(19), a(25)=2*a(24), a(30)=2*a(29),...
m = 3 => a(16)=3*a(14), a(21)=3*a(19), a(26)=3*a(24), a(31)=3*a(29),...
m = 4 => a(4)=4*a(1), a(32)=4*a(29), ...
But, for m=5, the formula (1) is not valid. We find a(13)=5*a(9), a(18)=5*a(10), a(23)=5*a(11), ...
(2) a(n+2) = a(n) + a(n+1) for n = 4, 9, 26, 27, 28, 29, 35, ...
For k > 1, the integer satisfying the definition is such that ceiling(Pi*k - 1/k) = floor(Pi*k + 1/k). - Stefano Spezia, Apr 26 2023
LINKS
Takao Komatsu, The interval associated with a Fibonacci number, The Fibonacci Quarterly, Volume 41, Number 1, February 2003.
EXAMPLE
For k=1 there exists two integers a(1)=3 and a(2)=4 in the interval [1*Pi -1/1, 1*Pi + 1/1] = [2.14159...,4.14159...];
for k=2, the number a(3)=6 is in the interval [2*Pi-1/2, 2*Pi+1/2] = [5.783185..., 6.783185...];
for k=6, the number a(4)= 19 is in the interval [6*Pi-1/6, 6*Pi+1/6] = [18.682889..., 19.016223...].
MAPLE
*** the program gives the interval [a, b], a(n) and k ***
nn:=10^9:
for n from 1 to nn do:
x1:=evalhf(Pi*n-1/n):y1:=evalhf(Pi*n+1/n):
x:=floor(x1):y:=floor(y1):
for j from x+1 to y do:
printf("%g %g %d %d\n", x1, y1, j, n):
od:
od:
MATHEMATICA
kmax=10^9; Flatten[Table[Range[Ceiling[Pi k-1/k], Floor[Pi k+1/k]], {k, kmax}]] (* or limiting memory usage *)
a = {3, 4}; kmax = 10^9; For[k = 1, k <= kmax, k++,
If[(nw = Ceiling[Pi k - 1/k]) == Floor[Pi k + 1/k],
AppendTo[a, nw]]]; a (* Stefano Spezia, Apr 26 2023 *)
CROSSREFS
Sequence in context: A136242 A066732 A304679 * A038520 A294990 A081888
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 15 2015
STATUS
approved