login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A265732
Powers C^z = A^x + B^y with all positive integers and x,y,z > 1, with multiplicity.
2
8, 9, 16, 16, 25, 25, 32, 32, 32, 36, 36, 64, 64, 64, 81, 81, 100, 100, 100, 125, 125, 128, 128, 128, 128, 128, 128, 144, 144, 169, 196, 225, 225, 225, 225, 243, 256, 256, 256, 289, 289, 289, 324, 324, 324, 343, 400, 400, 400, 441, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 576
OFFSET
1,1
COMMENTS
We do not distinguish between the equations C^z = A^x + B^y and C^z = B^y + A^x.
This type of equation is used in the Fermat-Catalan conjecture, the ABC conjecture, etc., of course with additional restrictions and conditions.
EXAMPLE
128 = 64 + 64 ==> 2^7 = 8^2 + 8^2 = 8^2 + 4^3 = 8^2 + 2^6 = 4^3 + 4^3 = 4^3 + 2^6 = 2^6 + 2^6 (but not 4^3 + 8^2, 2^6 + 8^2, 2^6 + 4^3).
PROG
(PARI) A265732(lim, bflag=0)=
{my(Lc=List(1), Lb=List(), La=Lb, czn, lcn, lan, lim2=logint(lim, 2), lim3, k);
for(z=2, lim2, lim3=sqrtnint(lim, z); for(C=2, lim3, listput(Lc, C^z)) );
lcn = #Lc; if(lcn==0, return(-1));
for(i=1, lcn, for(j=i, lcn, czn=Lc[i]+Lc[j]; if(czn>lim, next);
La=findinlista(Lc, czn); lan=#La; if(!lan, next);
for(k=1, lan, listput(Lb, czn)))); lcn=#Lb; listsort(Lb, 0);
if(bflag, for(i=1, lcn, print(i , " ", Lb[i]))); if(!bflag, return(Vec(Lb)));
}
findinlista(list, item, sind=1)={my(ln=#list, Li=List());
if(ln==0||sind<1||sind>ln, return(Li));
for(i=sind, ln, if(list[i]==item, listput(Li, i))); return(Li);
} \\ Anatoly E. Voevudko, Nov 23 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Anatoly E. Voevudko, Dec 14 2015
STATUS
approved