login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265732
Powers C^z = A^x + B^y with all positive integers and x,y,z > 1, with multiplicity.
2
8, 9, 16, 16, 25, 25, 32, 32, 32, 36, 36, 64, 64, 64, 81, 81, 100, 100, 100, 125, 125, 128, 128, 128, 128, 128, 128, 144, 144, 169, 196, 225, 225, 225, 225, 243, 256, 256, 256, 289, 289, 289, 324, 324, 324, 343, 400, 400, 400, 441, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 576
OFFSET
1,1
COMMENTS
We do not distinguish between the equations C^z = A^x + B^y and C^z = B^y + A^x.
This type of equation is used in the Fermat-Catalan conjecture, the ABC conjecture, etc., of course with additional restrictions and conditions.
EXAMPLE
128 = 64 + 64 ==> 2^7 = 8^2 + 8^2 = 8^2 + 4^3 = 8^2 + 2^6 = 4^3 + 4^3 = 4^3 + 2^6 = 2^6 + 2^6 (but not 4^3 + 8^2, 2^6 + 8^2, 2^6 + 4^3).
PROG
(PARI) A265732(lim, bflag=0)=
{my(Lc=List(1), Lb=List(), La=Lb, czn, lcn, lan, lim2=logint(lim, 2), lim3, k);
for(z=2, lim2, lim3=sqrtnint(lim, z); for(C=2, lim3, listput(Lc, C^z)) );
lcn = #Lc; if(lcn==0, return(-1));
for(i=1, lcn, for(j=i, lcn, czn=Lc[i]+Lc[j]; if(czn>lim, next);
La=findinlista(Lc, czn); lan=#La; if(!lan, next);
for(k=1, lan, listput(Lb, czn)))); lcn=#Lb; listsort(Lb, 0);
if(bflag, for(i=1, lcn, print(i , " ", Lb[i]))); if(!bflag, return(Vec(Lb)));
}
findinlista(list, item, sind=1)={my(ln=#list, Li=List());
if(ln==0||sind<1||sind>ln, return(Li));
for(i=sind, ln, if(list[i]==item, listput(Li, i))); return(Li);
} \\ Anatoly E. Voevudko, Nov 23 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Anatoly E. Voevudko, Dec 14 2015
STATUS
approved