login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265732 Powers C^z = A^x + B^y with all positive integers and x,y,z > 1, with multiplicity. 2
8, 9, 16, 16, 25, 25, 32, 32, 32, 36, 36, 64, 64, 64, 81, 81, 100, 100, 100, 125, 125, 128, 128, 128, 128, 128, 128, 144, 144, 169, 196, 225, 225, 225, 225, 243, 256, 256, 256, 289, 289, 289, 324, 324, 324, 343, 400, 400, 400, 441, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 576 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

We do not distinguish between the equations C^z = A^x + B^y and C^z = B^y + A^x.

This type of equation is used in the Fermat-Catalan conjecture, the ABC conjecture, etc., of course with additional restrictions and conditions.

LINKS

Anatoly E. Voevudko, Table of n, a(n) for n = 1..16865

Anatoly E. Voevudko, Description of all powers in b265732

Anatoly E. Voevudko, Description of all powers in b265731

Anatoly E. Voevudko, Description of all powers in b245713

Anatoly E. Voevudko, Description of all powers in b261782

Wikipedia, abc conjecture

Wikipedia, Fermat-Catalan conjecture

EXAMPLE

128 = 64 + 64 ==> 2^7 = 8^2 + 8^2 = 8^2 + 4^3 = 8^2 + 2^6 = 4^3 + 4^3 = 4^3 + 2^6 = 2^6 + 2^6 (but not 4^3 + 8^2, 2^6 + 8^2, 2^6 + 4^3).

PROG

(PARI) A265732(lim, bflag=0)=

{my(Lc=List(1), Lb=List(), La=Lb, czn, lcn, lan, lim2=logint(lim, 2), lim3, k);

for(z=2, lim2, lim3=sqrtnint(lim, z); for(C=2, lim3, listput(Lc, C^z)) );

lcn = #Lc; if(lcn==0, return(-1));

for(i=1, lcn, for(j=i, lcn, czn=Lc[i]+Lc[j]; if(czn>lim, next);

La=findinlista(Lc, czn); lan=#La; if(!lan, next);

for(k=1, lan, listput(Lb, czn)))); lcn=#Lb; listsort(Lb, 0);

if(bflag, for(i=1, lcn, print(i , " ", Lb[i]))); if(!bflag, return(Vec(Lb)));

}

findinlista(list, item, sind=1)={my(ln=#list, Li=List());

if(ln==0||sind<1||sind>ln, return(Li));

for(i=sind, ln, if(list[i]==item, listput(Li, i))); return(Li);

} \\ Anatoly E. Voevudko, Nov 23 2015

CROSSREFS

Cf. A000290, A245713, A261782, A264901, A265731.

Sequence in context: A265221 A286476 A079669 * A047393 A241263 A307417

Adjacent sequences:  A265729 A265730 A265731 * A265733 A265734 A265735

KEYWORD

nonn,easy

AUTHOR

Anatoly E. Voevudko, Dec 14 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 21:00 EST 2019. Contains 329937 sequences. (Running on oeis4.)