login
A307417
Numbers that can be expressed in a base in such a way that the sum of cubes of their digits in this base equals the original number.
1
8, 9, 16, 17, 27, 28, 29, 35, 43, 54, 55, 62, 64, 65, 72, 91, 92, 99, 118, 125, 126, 127, 128, 133, 134, 152, 153, 189, 190, 216, 217, 224, 243, 244, 250, 251, 280, 307, 341, 342, 343, 344, 351, 370, 371, 407, 432, 433, 468, 469, 512, 513, 514, 520, 539, 559
OFFSET
1,1
COMMENTS
There are infinitely many such numbers (proof in the second Johnson link).
LINKS
César Eliud Lozada, Table of n, a(n) for n = 1..114
Allan Wm. Johnson Jr., Crux Mathematicorum, Vol. 5, No. 1, January 1979, problem 407, 16.
Allan Wm. Johnson Jr., Crux Mathematicorum, Vol. 5, No. 9, November 1979, solution to problem 407, 273-277.
EXAMPLE
a(1) = 8 = [2, 0] (base 4) = 2^3 + 0^3
a(2) = 9 = [2, 1] (base 4) = 2^3 + 1^3
a(3) = 16 = [2, 2] (base 7) = 2^3 + 2^3
a(4) = 17 = [1, 2, 2] (base 3) = 1^3 + 2^3 + 2^3
MAPLE
sqn:= []; lis:=[];
for n to 1000 do
b := 2;
while b < n do #needs to be adjusted
q := convert(n, base, b);
s := convert(map(proc (X) options operator, arrow; X^3 end proc, q), `+`);
if evalb(s = n) then
sqn := [op(sqn), n];
lis := [op(lis), [n, b, ListTools[Reverse](q)]];
break
end if;
b := b+1
end do
end do;
lis := lis; #list of decompositions [number, base, conversion]
sqn := sqn; #sequence
CROSSREFS
KEYWORD
nonn,base
AUTHOR
César Eliud Lozada, Apr 07 2019
STATUS
approved