|
|
A023052
|
|
Perfect Digital Invariants: numbers that are the sum of some fixed power of their digits.
|
|
33
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, 54748, 92727, 93084, 194979, 548834, 1741725, 4210818, 9800817, 9926315, 14459929, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Randle has suggested that these numbers be called "powerful", but this usually refers to a distinct property related to prime factorization, cf. A001694, A036966, A005934.
Numbers m such that m = Sum_{i=1..k} d(i)^s for some s, where d(1..k) are the decimal digits of m.
If a term x is a multiple of 10, then x+1 is a term too. - Paolo P. Lava, Apr 07 2016
|
|
LINKS
|
Encyclopaedia Britannica, Perfect digital invariant, article "Number patterns and curiosities" online since July 26, 1999, revised Aug 25, 2000.
J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383. [Annotated scanned copy]
|
|
EXAMPLE
|
153 = 1^3 + 5^3 + 3^3, 4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
|
|
MAPLE
|
P:=proc(q) local a, b, c, k, n, ok; for n from 1 to q do a:=[]; b:=n; ok:=0;
for k from 1 to ilog10(n)+1 do if (b mod 10)>1 then ok:=1; fi;
a:=[(b mod 10), op(a)]; b:=trunc(b/10); od; b:=0; c:=0;
if ok=1 then while c<n do b:=b+1; c:=add(a[k]^b, k=1..nops(a)); od; if
c=n then print(n); fi; fi; od; end: P(10^9); # Paolo P. Lava, Feb 08 2016
|
|
MATHEMATICA
|
Select[Range[0, 10^5], Function[m, AnyTrue[Function[k, Total@ Map[Power[#, k] &, IntegerDigits@ m]] /@ Range@ 10, # == m &]]] (* Michael De Vlieger, Feb 08 2016, Version 10 *)
|
|
PROG
|
(PARI) is(n)=if(n<10, return(1)); my(d=digits(n), m=vecmax(d)); if(m<2, return(0)); for(k=3, logint(n, m), if(sum(i=1, #d, d[i]^k)==n, return(1))); 0 \\ Charles R Greathouse IV, Feb 06 2017
(PARI) select( is_A023052(n, b=10)={n<b|| forstep(p=logint(n, max(vecmax(b=digits(n, b)), 2)), 2, -1, my(t=vecsum([d^p|d<-b])); t>n|| return(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
|
|
CROSSREFS
|
Cf. A001694 (powerful numbers: p|n => p^2|n), A005934 (highly powerful numbers).
Cf. A005188 (here the power must be equal to the number of digits).
|
|
KEYWORD
|
nonn,base,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Computed to 10^50 by G. N. Gusev (GGN(AT)rm.yaroslavl.ru)
Computed to 10^74 by Xiaoqing Tang
|
|
STATUS
|
approved
|
|
|
|