login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Powers C^z = A^x + B^y with all positive integers and x,y,z > 1, with multiplicity.
2

%I #15 Jan 09 2016 00:32:02

%S 8,9,16,16,25,25,32,32,32,36,36,64,64,64,81,81,100,100,100,125,125,

%T 128,128,128,128,128,128,144,144,169,196,225,225,225,225,243,256,256,

%U 256,289,289,289,324,324,324,343,400,400,400,441,512,512,512,512,512,512,512,512,512,512,512,512,512,512,576

%N Powers C^z = A^x + B^y with all positive integers and x,y,z > 1, with multiplicity.

%C We do not distinguish between the equations C^z = A^x + B^y and C^z = B^y + A^x.

%C This type of equation is used in the Fermat-Catalan conjecture, the ABC conjecture, etc., of course with additional restrictions and conditions.

%H Anatoly E. Voevudko, <a href="/A265732/b265732.txt">Table of n, a(n) for n = 1..16865</a>

%H Anatoly E. Voevudko, <a href="/A265732/a265732.txt">Description of all powers in b265732</a>

%H Anatoly E. Voevudko, <a href="/A265731/a265731.txt">Description of all powers in b265731</a>

%H Anatoly E. Voevudko, <a href="/A245713/a245713.txt">Description of all powers in b245713</a>

%H Anatoly E. Voevudko, <a href="/A261782/a261782.txt">Description of all powers in b261782</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Abc_conjecture">abc conjecture</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Fermat%E2%80%93Catalan_conjecture">Fermat-Catalan conjecture</a>

%e 128 = 64 + 64 ==> 2^7 = 8^2 + 8^2 = 8^2 + 4^3 = 8^2 + 2^6 = 4^3 + 4^3 = 4^3 + 2^6 = 2^6 + 2^6 (but not 4^3 + 8^2, 2^6 + 8^2, 2^6 + 4^3).

%o (PARI) A265732(lim,bflag=0)=

%o {my(Lc=List(1),Lb=List(),La=Lb,czn,lcn,lan,lim2=logint(lim,2),lim3,k);

%o for(z=2,lim2,lim3=sqrtnint(lim,z); for(C=2,lim3,listput(Lc,C^z)) );

%o lcn = #Lc; if(lcn==0,return(-1));

%o for(i=1,lcn, for(j=i,lcn, czn=Lc[i]+Lc[j]; if(czn>lim, next);

%o La=findinlista(Lc, czn); lan=#La; if(!lan, next);

%o for(k=1,lan, listput(Lb, czn)))); lcn=#Lb; listsort(Lb,0);

%o if(bflag,for(i=1,lcn,print(i ," ",Lb[i]))); if(!bflag,return(Vec(Lb)));

%o }

%o findinlista(list, item, sind=1)={my(ln=#list, Li=List());

%o if(ln==0||sind<1||sind>ln, return(Li));

%o for(i=sind, ln, if(list[i]==item, listput(Li,i))); return(Li);

%o } \\ _Anatoly E. Voevudko_, Nov 23 2015

%Y Cf. A000290, A245713, A261782, A264901, A265731.

%K nonn,easy

%O 1,1

%A _Anatoly E. Voevudko_, Dec 14 2015