login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A047202
Numbers that are congruent to {2, 3, 4} mod 5.
34
2, 3, 4, 7, 8, 9, 12, 13, 14, 17, 18, 19, 22, 23, 24, 27, 28, 29, 32, 33, 34, 37, 38, 39, 42, 43, 44, 47, 48, 49, 52, 53, 54, 57, 58, 59, 62, 63, 64, 67, 68, 69, 72, 73, 74, 77, 78, 79, 82, 83, 84, 87, 88, 89, 92, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108
OFFSET
1,1
FORMULA
G.f.: x*(2+x+x^2+x^3) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 07 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>3.
a(n) = (15*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 5k-1, a(3k-1) = 5k-2, a(3k-2) = 5k-3. (End)
a(n) = 2*n - floor((n-1)/3) - ((n-1) mod 3). - Wesley Ivan Hurt, Sep 26 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt((5+sqrt(5))/10)*Pi/5 + log(phi)/sqrt(5) - 3*log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 16 2023
MAPLE
A047202:=n->(15*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047202(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{2, 3, 4}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)
PROG
(Magma) [n: n in [1..150] | n mod 5 in [2..4]]; // Vincenzo Librandi, Mar 31 2011
(PARI) a(n)=n\3*5+[-1, 2, 3][n%3+1] \\ Charles R Greathouse IV, Dec 22 2011
CROSSREFS
Cf. A001622.
Sequence in context: A061856 A105941 A276876 * A064953 A097503 A030701
KEYWORD
nonn,easy
STATUS
approved