The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047203 Numbers that are congruent to {0, 2, 3, 4} mod 5. 19
 0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Complement of A016861; A027445(a(n)) mod 10 = 0. - Reinhard Zumkeller, Oct 23 2006 LINKS Melvyn B. Nathanson, On the fractional parts of roots of positive real numbers, Amer. Math. Monthly, 120 (2013), 409-429 [see p. 417]. Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA a(n) = floor((5n-2)/4). - Gary Detlefs, Mar 06 2010 a(n) = floor((15n-5)/12). - Gary Detlefs, Mar 07 2010 G.f.: x^2*(2+x+x^2+x^3)/((1+x)*(1+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011 From Wesley Ivan Hurt, May 14 2016: (Start) a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. a(n) = (10*n-7+(-1)^n+2*(-1)^((2*n+3+(-1)^n)/4))/8. a(2n) = A047211(n), a(2n-1) = A047218(n). a(n) = A047207(n+1) - 1. a(n+2) = n + 2 + A002265(n) for n>0. a(n+3)-a(n+2) = A177704(n) for n>0. a(1-n) = - A001068(n). (End) MAPLE seq(floor(5*n-2)/4), n=1..72); # Gary Detlefs, Mar 06 2010 seq(floor((15*n-5)/12), n=1..72); # Gary Detlefs, Mar 07 2010 MATHEMATICA Flatten[Table[5*n + {0, 2, 3, 4}, {n, 0, 20}]] (* T. D. Noe, Nov 12 2013 *) PROG (PARI) a(n)=(5*n-2)\4 \\ Charles R Greathouse IV, Jun 11 2015 (MAGMA) [Floor((5*n-2)/4) : n in [1..100]]; // Wesley Ivan Hurt, May 14 2016 CROSSREFS Cf. A001068, A002265, A016861, A027445, A047207, A047211, A047218, A177704. Sequence in context: A226066 A005838 A184486 * A080919 A267303 A267307 Adjacent sequences:  A047200 A047201 A047202 * A047204 A047205 A047206 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Reinhard Zumkeller, Oct 23 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 06:40 EDT 2020. Contains 333119 sequences. (Running on oeis4.)