login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047624
Numbers that are congruent to {0, 1, 3, 5} mod 8.
5
0, 1, 3, 5, 8, 9, 11, 13, 16, 17, 19, 21, 24, 25, 27, 29, 32, 33, 35, 37, 40, 41, 43, 45, 48, 49, 51, 53, 56, 57, 59, 61, 64, 65, 67, 69, 72, 73, 75, 77, 80, 81, 83, 85, 88, 89, 91, 93, 96, 97, 99, 101, 104, 105, 107, 109, 112, 113, 115, 117, 120, 121, 123
OFFSET
1,3
FORMULA
From Reinhard Zumkeller, Feb 21 2010: (Start)
a(n+1) = A173562(n) - A173562(n-1);
a(n+1) - a(n) = A140081(n-1) + 1;
a(n) = A140201(n-1) + A042948(A004526(n-1)). (End)
G.f.: x^2*(1+2*x+2*x^2+3*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 01 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-11-i^(2*n)+i^(1-n)-i^(1+n))/4 where i=sqrt(-1).
a(2k) = A016813(k-1) for k>0, a(2k-1) = A047470(k). (End)
E.g.f.: (6 + sin(x) + (4*x - 5)*sinh(x) + (4*x - 6)*cosh(x))/2. - Ilya Gutkovskiy, Jun 01 2016
Sum_{n>=2} (-1)^n/a(n) = (3-sqrt(2))*Pi/16 + (8-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8. - Amiram Eldar, Dec 20 2021
MAPLE
A047624:=n->(8*n-11-I^(2*n)+I^(1-n)-I^(1+n))/4: seq(A047624(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
MATHEMATICA
Table[(8n-11-I^(2n)+I^(1-n)-I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, Jun 01 2016 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 3, 5, 8}, 100] (* G. C. Greubel, Jun 01 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 3, 5]]; // Wesley Ivan Hurt, Jun 01 2016
KEYWORD
nonn,easy
STATUS
approved