login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140201
Partial sums of A140081.
5
0, 1, 2, 4, 4, 5, 6, 8, 8, 9, 10, 12, 12, 13, 14, 16, 16, 17, 18, 20, 20, 21, 22, 24, 24, 25, 26, 28, 28, 29, 30, 32, 32, 33, 34, 36, 36, 37, 38, 40, 40, 41, 42, 44, 44, 45, 46, 48, 48, 49, 50, 52, 52, 53, 54, 56, 56, 57, 58, 60, 60, 61, 62, 64, 64, 65, 66, 68, 68, 69, 70, 72, 72, 73, 74
OFFSET
0,3
FORMULA
a(n) = A047624(n+1) - A042948(A004526(n)). - Reinhard Zumkeller, Feb 21 2010
a(n) = A002265(n+1) + A057353(n+1). - Reinhard Zumkeller, Feb 26 2011
From Bruno Berselli, Jan 27 2011: (Start)
G.f.: x*(1+x+2*x^2)/((1+x)*(1+x^2)*(1-x)^2).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
a(n) = n + A121262(n+1). (End)
a(n) = n when n+1 is not a multiple of 4, and a(n) = n+1 when n+1 is a multiple of 4. - Dennis P. Walsh, Aug 06 2012
a(n) = A004524(n+1) + A004526(n+1). - Arkadiusz Wesolowski, Sep 17 2012
a(n) = (4*n+1-i^(2*n)+(-i)^(1+n)+i^(1+n))/4 where i=sqrt(-1). - Wesley Ivan Hurt, Jun 04 2016
a(n) = n+1-(sign((n+1) mod 4) mod 3). - Wesley Ivan Hurt, Sep 26 2017
MAPLE
A140201:=n->(4*n+1-I^(2*n)+(-I)^(1+n)+I^(1+n))/4: seq(A140201(n), n=0..100); # Wesley Ivan Hurt, Jun 04 2016
MATHEMATICA
Accumulate[PadRight[{}, 68, {0, 1, 1, 2}]] (* Harvey P. Dale, Aug 19 2011 *)
PROG
(Magma) I:=[0, 1, 2, 4, 4]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..80]]; // Vincenzo Librandi, Sep 17 2012
KEYWORD
easy,nonn
AUTHOR
STATUS
approved