OFFSET
1,2
COMMENTS
Robert G. Wilson v observes in A280098 that {1, 3, 4, 6, 8, 12, 24} seem to be the only positive integers k such that sigma(kn-1)/k is an integer for all n > 0.
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..100000
FORMULA
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Mar 28 2024
MAPLE
with(numtheory):
seq(sigma(12*n-1)/12, n=1..10^3); # Muniru A Asiru, Dec 28 2017
MATHEMATICA
Array[DivisorSigma[1, 12 # - 1]/12 &, 66] (* Michael De Vlieger, Dec 08 2017 *)
PROG
(PARI) vector(90, n, sigma(12*n-1)/12)
(GAP) sequence := List([1..10^5], n-> Sigma(12 *n-1)/12); # Muniru A Asiru, Dec 28 2017
CROSSREFS
Cf. A280098 (analog for k = 24), A097723 (analog for k = 4), A033686 (analog for k = 3), A000203 (sigma, also the analog for k = 1).
The analog for k = 8 is A258835, up to the offset.
The analog for k = 6 is A098098 (up to the offset), a signed variant of this and the preceding one is A258831.
Cf. A086463.
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Dec 08 2017
STATUS
approved