OFFSET
1,2
COMMENTS
Conjecture: only the integers k in {1, 3, 4, 6, 8, 12, 24} have the property that the sum of the divisors of (k*n-1)/k is always an integer. - Robert G. Wilson v, Dec 25 2016
The finite sequence mentioned in the above conjecture gives the sum of the divisors of the partition numbers of the first seven positive integers (cf. A139041). - Omar E. Pol, Dec 25 2016
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..10000
FORMULA
24 * a(n) = sum of the divisors of A183010(n).
a(n) = A280097(n)/24. - Omar E. Pol, Dec 25 2016
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 = 0.548311... (A086463). - Amiram Eldar, Mar 28 2024
EXAMPLE
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 7*x^7 + 8*x^8 + 11*x^9 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, DivisorSigma[ 1, 24 n - 1] / 24];
DivisorSigma[1, 24*Range[70]-1]/24 (* Harvey P. Dale, Sep 25 2017 *)
PROG
(PARI) {a(n) = if( n<1, 0, sigma(24*n - 1) / 24)};
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Dec 25 2016
STATUS
approved