login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086660
Stirling transform of Hermite numbers: Sum_{k=0..n} Stirling2(n,k) * HermiteH(k,0).
2
1, 0, -2, -6, -2, 90, 598, 1554, -10082, -164310, -1101242, -1496286, 64767118, 965876730, 7104497398, 57428274, -856472198402, -14195316779190, -122409183339482, 25272908324034, 21770258523698158
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(-(exp(x)-1)^2).
MATHEMATICA
Table[Sum[StirlingS2[n, k]HermiteH[k, 0], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Mar 24 2013 *)
With[{nmax = 50}, CoefficientList[Series[Exp[-(Exp[x] - 1)^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 12 2018 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(exp(-(exp(x)-1)^2))) \\ G. C. Greubel, Jul 12 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-(Exp(x)-1)^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 12 2018
CROSSREFS
Sequence in context: A363395 A005729 A271504 * A271503 A102068 A351709
KEYWORD
sign
AUTHOR
Vladeta Jovovic, Sep 12 2003
STATUS
approved