login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271503
a(1) = 1; thereafter a(n) is the product of all 0 < m < n for which a(m) divides n.
3
1, 1, 2, 6, 2, 120, 2, 210, 2, 1890, 2, 83160, 2, 270270, 2, 4054050, 2, 275675400, 2, 1309458150, 2, 27498621150, 2, 2529873145800, 2, 15811707161250, 2, 426916093353750, 2, 49522266829035000, 2, 383797567925021250, 2, 12665319741525701250, 2
OFFSET
1,3
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..809 (n = 1..100 from Peter Kagey)
FORMULA
a(2n + 1) = 2 for all n > 1.
a(n) is even for all n > 2.
EXAMPLE
a(1) = 1 by definition
a(2) = 1 because a(1) divides 2.
a(3) = 1 * 2 = 2 because a(1) and a(2) divide 3.
a(4) = 1 * 2 * 3 = 6 because a(1), a(2), and a(3) divide 4.
a(5) = 1 * 2 = 2 because a(1) and a(2) divide 5.
MATHEMATICA
a = {1}; Do[AppendTo[a, Times @@ Flatten@ Position[a, m_ /; Divisible[n, m]]], {n, 2, 35}]; a (* Michael De Vlieger, Apr 09 2016 *)
PROG
(Python)
from itertools import count, islice
from math import prod
from sympy import divisors
def A271503_gen(): # generator of terms
A271503_dict = {1:1}
yield 1
for n in count(2):
yield (s:=prod(A271503_dict.get(d, 1) for d in divisors(n, generator=True)))
A271503_dict[s] = A271503_dict.get(s, 1)*n
A271503_list = list(islice(A271503_gen(), 40)) # Chai Wah Wu, Nov 17 2022
CROSSREFS
Sequence in context: A005729 A271504 A086660 * A102068 A351709 A188733
KEYWORD
nonn
AUTHOR
Peter Kagey, Apr 08 2016
STATUS
approved