OFFSET
1,2
COMMENTS
For k > 1, numbers k such that the digit 2 followed by k-2 occurrences of the digit 3 followed by the digits 93 is prime (see Example section).
a(35) > 3*10^5.
LINKS
Makoto Kamada, Factorization of near-repdigit-related numbers.
Makoto Kamada, Search for 23w93.
EXAMPLE
3 is in this sequence because (7*10^3 + 179)/3 = 2393 is prime.
Initial terms and associated primes:
a(1) = 1, 83;
a(2) = 2, 293;
a(3) = 3, 2393;
a(4) = 7, 23333393;
a(5) = 8, 233333393. etc.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(7*10^# + 179)/3] &]
Join[{1}, Flatten[Position[Table[100*FromDigits[PadRight[{2}, n, 3]]+93, {n, 47000}], _?PrimeQ]]+1] (* Harvey P. Dale, Dec 11 2018 *)
PROG
(PARI) is(n)=ispseudoprime((7*10^n+179)/3) \\ Charles R Greathouse IV, Jun 13 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Robert Price, Apr 08 2016
EXTENSIONS
a(31)-a(33) from Robert Price, Sep 01 2018
a(34) from Robert Price, Jun 21 2023
STATUS
approved