login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271504
With a(1) = 1, a(n) is the LCM of all 0 < m < n for which a(m) divides n.
3
1, 1, 2, 6, 2, 60, 2, 210, 2, 630, 2, 13860, 2, 90090, 2, 90090, 2, 3063060, 2, 29099070, 2, 29099070, 2, 1338557220, 2, 3346393050, 2, 10039179150, 2, 582272390700, 2, 9025222055850, 2, 9025222055850, 2, 18050444111700, 2, 333933216066450, 2, 333933216066450
OFFSET
1,3
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..2309 (n = 1..100 from Peter Kagey)
FORMULA
a(2n + 1) = 2 for all n > 1.
a(n) is even for all n > 2.
MATHEMATICA
a = {1}; Do[AppendTo[a, LCM @@ Select[Range[n - 1], Divisible[n, a[[#]]] &]], {n, 2, 40}]; a (* Michael De Vlieger, Apr 08 2016 *)
PROG
(Python 3.9+)
from math import lcm
from itertools import count, islice
from sympy import divisors
def A271504_gen(): # generator of terms
A271504_dict = {1:1}
yield 1
for n in count(2):
yield (s:=lcm(*(A271504_dict.get(d, 1) for d in divisors(n, generator=True))))
A271504_dict[s] = lcm(A271504_dict.get(s, 1), n)
A271504_list = list(islice(A271504_gen(), 40)) # Chai Wah Wu, Nov 17 2022
CROSSREFS
Sequence in context: A122018 A363395 A005729 * A086660 A271503 A102068
KEYWORD
nonn
AUTHOR
Peter Kagey, Apr 08 2016
STATUS
approved