Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Nov 18 2022 08:32:05
%S 1,1,2,6,2,60,2,210,2,630,2,13860,2,90090,2,90090,2,3063060,2,
%T 29099070,2,29099070,2,1338557220,2,3346393050,2,10039179150,2,
%U 582272390700,2,9025222055850,2,9025222055850,2,18050444111700,2,333933216066450,2,333933216066450
%N With a(1) = 1, a(n) is the LCM of all 0 < m < n for which a(m) divides n.
%H Chai Wah Wu, <a href="/A271504/b271504.txt">Table of n, a(n) for n = 1..2309</a> (n = 1..100 from Peter Kagey)
%F a(2n + 1) = 2 for all n > 1.
%F a(n) is even for all n > 2.
%t a = {1}; Do[AppendTo[a, LCM @@ Select[Range[n - 1], Divisible[n, a[[#]]] &]], {n, 2, 40}]; a (* _Michael De Vlieger_, Apr 08 2016 *)
%o (Python 3.9+)
%o from math import lcm
%o from itertools import count, islice
%o from sympy import divisors
%o def A271504_gen(): # generator of terms
%o A271504_dict = {1:1}
%o yield 1
%o for n in count(2):
%o yield (s:=lcm(*(A271504_dict.get(d,1) for d in divisors(n,generator=True))))
%o A271504_dict[s] = lcm(A271504_dict.get(s,1),n)
%o A271504_list = list(islice(A271504_gen(),40)) # _Chai Wah Wu_, Nov 17 2022
%Y Cf. A269347, A271503.
%K nonn
%O 1,3
%A _Peter Kagey_, Apr 08 2016