login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Stirling transform of Hermite numbers: Sum_{k=0..n} Stirling2(n,k) * HermiteH(k,0).
2

%I #11 Sep 08 2022 08:45:11

%S 1,0,-2,-6,-2,90,598,1554,-10082,-164310,-1101242,-1496286,64767118,

%T 965876730,7104497398,57428274,-856472198402,-14195316779190,

%U -122409183339482,25272908324034,21770258523698158

%N Stirling transform of Hermite numbers: Sum_{k=0..n} Stirling2(n,k) * HermiteH(k,0).

%H G. C. Greubel, <a href="/A086660/b086660.txt">Table of n, a(n) for n = 0..500</a>

%F E.g.f.: exp(-(exp(x)-1)^2).

%t Table[Sum[StirlingS2[n,k]HermiteH[k,0],{k,0,n}],{n,0,20}] (* _Harvey P. Dale_, Mar 24 2013 *)

%t With[{nmax = 50}, CoefficientList[Series[Exp[-(Exp[x] - 1)^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Jul 12 2018 *)

%o (PARI) x='x+O('x^50); Vec(serlaplace(exp(-(exp(x)-1)^2))) \\ _G. C. Greubel_, Jul 12 2018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-(Exp(x)-1)^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jul 12 2018

%Y Cf. A067994, A052859.

%K sign

%O 0,3

%A _Vladeta Jovovic_, Sep 12 2003