login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067994 Hermite numbers. 9
1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, -30240, 0, 665280, 0, -17297280, 0, 518918400, 0, -17643225600, 0, 670442572800, 0, -28158588057600, 0, 1295295050649600, 0, -64764752532480000, 0, 3497296636753920000, 0, -202843204931727360000, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

|a(n)| is the number of square roots of any permutation in S_{2n} whose disjoint cycle decomposition consists of n transpositions, n > 0. For n=2, permutation (1,2)(3,4) in S_4 has exactly |a(2)|=2 square roots: (1,3,2,4) and (1,4,2,3). - Luis Manuel Rivera Martínez, Feb 25 2015

Self-convolution gives A076729(n)*(-1)^n interleaved with zeros. - Vladimir Reshetnikov, Oct 11 2016

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..730

Eric Weisstein's World of Mathematics, Hermite Numbers

FORMULA

E.g.f.: exp(-x^2). - Vladeta Jovovic, Aug 24 2002

a(n) = (-1)^(n/2) n!/(n/2)!, if n is even, 0 otherwise. - Mitch Harris, Feb 01 2006

a(n) = -(2n-2)*a(n-2). - Alexander Karpov, Jul 24 2017

E.g.f.: U(0) where U(k) = 1 - x^2/((2*k+1) - x^2*(2*k+1)/(x^2 - 2*(k+1)/U(k+1))) ; (continued fraction). - Sergei N. Gladkovskii, Oct 23 2012

G.f.: 1/G(0) where G(k) = 1 + 2*x^2*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2012

E.g.f.: E(0)/(1+x) where E(k) = 1 + x/(1 - x/(x - (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013

E.g.f.: E(0)-1, where E(k) = 2 - x^2/(2*k+1 + x^2/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013

a(2*k) = A097388(k), a(2*k+1) = 0. - Joerg Arndt, Oct 12 2016

MATHEMATICA

HermiteH[Range[0, 50], 0]

With[{nmax=50}, CoefficientList[Series[Exp[-x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 09 2018 *)

PROG

(PARI) a(n) = polhermite(n, 0); \\ Michel Marcus, Feb 27 2015

(PARI) x='x+O('x^30); Vec(serlaplace(exp(-x^2))) \\ G. C. Greubel, Jun 09 2018

(MAGMA) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018

CROSSREFS

Cf. A097388 (same sequence without zeros).

Cf. A001813, A076729.

Sequence in context: A292496 A285480 A156431 * A236219 A143246 A286198

Adjacent sequences:  A067991 A067992 A067993 * A067995 A067996 A067997

KEYWORD

sign

AUTHOR

Eric W. Weisstein, Feb 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 23 16:18 EST 2020. Contains 338590 sequences. (Running on oeis4.)