login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067994 Hermite numbers. 10
1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, -30240, 0, 665280, 0, -17297280, 0, 518918400, 0, -17643225600, 0, 670442572800, 0, -28158588057600, 0, 1295295050649600, 0, -64764752532480000, 0, 3497296636753920000, 0, -202843204931727360000, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

|a(n)| is the number of sets of ordered pairs of n labeled elements. - Steven Finch, Nov 14 2021

|a(n)| is the number of square roots of any permutation in S_{2n} whose disjoint cycle decomposition consists of n transpositions, n > 0. For n=2, permutation (1,2)(3,4) in S_4 has exactly |a(2)|=2 square roots: (1,3,2,4) and (1,4,2,3). - Luis Manuel Rivera Martínez, Feb 25 2015

Self-convolution gives A076729(n)*(-1)^n interleaved with zeros. - Vladimir Reshetnikov, Oct 11 2016

Named after the French mathematician Charles Hermite (1822-1901). - Amiram Eldar, Jun 06 2021

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..730

Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.

Eric Weisstein's World of Mathematics, Hermite Number.

Wikipedia, Hermite number.

FORMULA

E.g.f.: exp(-x^2). - Vladeta Jovovic, Aug 24 2002

a(n) = (-1)^(n/2)*n!/(n/2)! if n is even, 0 otherwise. - Mitch Harris, Feb 01 2006

a(n) = -(2*n-2)*a(n-2). - Alexander Karpov, Jul 24 2017

E.g.f.: U(0) where U(k) = 1 - x^2/((2*k+1) - x^2*(2*k+1)/(x^2 - 2*(k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 23 2012

G.f.: 1/G(0) where G(k) = 1 + 2*x^2*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2012

E.g.f.: E(0)/(1+x) where E(k) = 1 + x/(1 - x/(x - (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013

E.g.f.: E(0)-1, where E(k) = 2 - x^2/(2*k+1 + x^2/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013

a(2*k) = A097388(k), a(2*k+1) = 0. - Joerg Arndt, Oct 12 2016

From Peter Luschny, Nov 14 2021: (Start)

a(n) = A057077(n)*A126869(n)*A081123(n). In particular, a(n) is divisible by floor(n/2)!.

a(n) = Pochhammer(-n, n/2). (End)

EXAMPLE

From Steven Finch, Nov 14 2021: (Start)

|a(4)| = 12 because the sets of ordered pairs for n = 4 are

  {(1,2),(3,4)}, {(2,1),(3,4)}, {(1,2),(4,3)}, {(2,1),(4,3)},

  {(1,3),(2,4)}, {(3,1),(2,4)}, {(1,3),(4,2)}, {(3,1),(4,2)},

  {(1,4),(3,2)}, {(4,1),(3,2)}, {(1,4),(2,3)}, {(4,1),(2,3)}. (End)

MAPLE

A067994 := n -> pochhammer(-n, n/2):

seq(A067994(n), n = 0..31); # Peter Luschny, Nov 14 2021

MATHEMATICA

HermiteH[Range[0, 50], 0]

With[{nmax=50}, CoefficientList[Series[Exp[-x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 09 2018 *)

PROG

(PARI) a(n) = polhermite(n, 0); \\ Michel Marcus, Feb 27 2015

(PARI) x='x+O('x^30); Vec(serlaplace(exp(-x^2))) \\ G. C. Greubel, Jun 09 2018

(MAGMA) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018

CROSSREFS

Cf. A097388 (same sequence without zeros).

Cf. A001813, A076729, A126869, A081123.

Cf. A101109 (ordered triples instead of ordered pairs).

Sequence in context: A292496 A285480 A156431 * A236219 A143246 A286198

Adjacent sequences:  A067991 A067992 A067993 * A067995 A067996 A067997

KEYWORD

sign,changed

AUTHOR

Eric W. Weisstein, Feb 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)