login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101109
Number of sets of lists (sequences) of n labeled elements with k=3 elements per list.
2
1, 0, 0, 6, 0, 0, 360, 0, 0, 60480, 0, 0, 19958400, 0, 0, 10897286400, 0, 0, 8892185702400, 0, 0, 10137091700736000, 0, 0, 15388105201717248000, 0, 0, 30006805143348633600000, 0, 0, 73096577329197271449600000
OFFSET
0,4
COMMENTS
The (labeled) case for k=2 is A067994, the Hermite numbers. The (labeled) case for k>=1 is A000262, Number of "sets of lists".
LINKS
FORMULA
E.g.f.: exp(z^3).
a(0) = 1, a(1) = 0, a(2) = 0, (-n-3)*a(n+3)+3*a(n).
a(n) = n!/(n/3)!, if 3 divides n, 0 otherwise. - Mitch Harris, Jan 19 2006
EXAMPLE
Let Z[i] denote the i-th labeled element. Then a(3) = 6 with the following six sets:
Set(Sequence(Z[3],Z[1],Z[2])), Set(Sequence(Z[2],Z[1],Z[3])), Set(Sequence(Z[3],Z[2],Z[1])), Set(Sequence(Z[2],Z[3],Z[1])), Set(Sequence(Z[1],Z[3],Z[2])), Set(Sequence(Z[1],Z[2],Z[3])).
MAPLE
A101109 := n -> n!*PIECEWISE([1/GAMMA(1/3*n+1), irem(n, 3) = 0], [0, irem(n-1, 3) = 0], [0, irem(n-2, 3) = 0]); [ seq(n!*PIECEWISE([1/GAMMA(1/3*n+1), irem(n, 3) = 0], [0, irem(n-1, 3) = 0], [0, irem(n-2, 3) = 0]), n=0..30) ];
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
j!*binomial(n-1, j-1), j=`if`(n>2, 3, [][])))
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 10 2016
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x^3], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 16 2013 *)
PROG
(Sage)
def A101109(n) : return factorial(n)/factorial(n/3) if n%3 == 0 else 0
[A101109(n) for n in (0..30)] # Peter Luschny, Jul 12 2012
CROSSREFS
Sequence in context: A358515 A230787 A360424 * A353224 A293526 A293568
KEYWORD
nonn
AUTHOR
Thomas Wieder, Dec 01 2004
STATUS
approved