OFFSET
0,4
COMMENTS
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..582
FORMULA
E.g.f.: exp(z^3).
a(0) = 1, a(1) = 0, a(2) = 0, (-n-3)*a(n+3)+3*a(n).
a(n) = n!/(n/3)!, if 3 divides n, 0 otherwise. - Mitch Harris, Jan 19 2006
EXAMPLE
Let Z[i] denote the i-th labeled element. Then a(3) = 6 with the following six sets:
Set(Sequence(Z[3],Z[1],Z[2])), Set(Sequence(Z[2],Z[1],Z[3])), Set(Sequence(Z[3],Z[2],Z[1])), Set(Sequence(Z[2],Z[3],Z[1])), Set(Sequence(Z[1],Z[3],Z[2])), Set(Sequence(Z[1],Z[2],Z[3])).
MAPLE
A101109 := n -> n!*PIECEWISE([1/GAMMA(1/3*n+1), irem(n, 3) = 0], [0, irem(n-1, 3) = 0], [0, irem(n-2, 3) = 0]); [ seq(n!*PIECEWISE([1/GAMMA(1/3*n+1), irem(n, 3) = 0], [0, irem(n-1, 3) = 0], [0, irem(n-2, 3) = 0]), n=0..30) ];
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
j!*binomial(n-1, j-1), j=`if`(n>2, 3, [][])))
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 10 2016
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x^3], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 16 2013 *)
PROG
(Sage)
def A101109(n) : return factorial(n)/factorial(n/3) if n%3 == 0 else 0
[A101109(n) for n in (0..30)] # Peter Luschny, Jul 12 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Wieder, Dec 01 2004
STATUS
approved