login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101108
Expansion of solution to a functional equation.
0
1, 1, 1, 0, 1, 1, 1, -1, 0, 1, 2, 1, 0, 0, 0, 0, 0, -1, -1, 1, 4, 3, 1, -2, 1, 1, 0, -3, -3, 1, 4, 4, -1, -3, -3, 2, 0, -4, -4, 1, 11, 9, 3, -6, -1, 3, 3, -8, -10, 2, 13, 14, -3, -10, -7, 4, 0, -12, -15, 1, 25, 21, 3, -16, -5, 7, 3, -18, -26, 1, 29, 34, -5, -24, -17, 11, 5, -27, -36, 0, 58, 54, 12, -37, -12, 20, 15, -42, -63, -1
OFFSET
0,11
FORMULA
Given g.f. A(x), then B(x)=x*A(x^5) satisfies 0=f(B(x),B(x^2),B(x^4)) where f(u,v,w)=uv^4+v^3w^2+u^2w^3-u^3vw.
PROG
(PARI) a(n)=local(B, A, k); if(n<0, 0, k=(3+sqrtint(9+40*n))\10; A= sum(i=-k, k, (-1)^i*x^((5*i^2+3*i)/2), x*O(x^n)) /sum(i=-k, k, (-1)^i*x^((5*i^2+i)/2), x*O(x^n)); B=k=1; while(k<=n, k*=2; B/=A; A=subst(A, x, x^2) +x*O(x^n)); polcoeff(B, n))
(PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k)^-sum(i=0, valuation(k, 2), kronecker(5, k/2^i)), 1+x*O(x^n)), n))}
CROSSREFS
Cf. A007325.
Sequence in context: A016011 A263338 A103522 * A279280 A284093 A284095
KEYWORD
sign
AUTHOR
Michael Somos, Dec 01 2004
STATUS
approved