OFFSET
0,11
FORMULA
Given g.f. A(x), then B(x)=x*A(x^5) satisfies 0=f(B(x),B(x^2),B(x^4)) where f(u,v,w)=uv^4+v^3w^2+u^2w^3-u^3vw.
PROG
(PARI) a(n)=local(B, A, k); if(n<0, 0, k=(3+sqrtint(9+40*n))\10; A= sum(i=-k, k, (-1)^i*x^((5*i^2+3*i)/2), x*O(x^n)) /sum(i=-k, k, (-1)^i*x^((5*i^2+i)/2), x*O(x^n)); B=k=1; while(k<=n, k*=2; B/=A; A=subst(A, x, x^2) +x*O(x^n)); polcoeff(B, n))
(PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k)^-sum(i=0, valuation(k, 2), kronecker(5, k/2^i)), 1+x*O(x^n)), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Dec 01 2004
STATUS
approved