The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101108 Expansion of solution to a functional equation. 0
 1, 1, 1, 0, 1, 1, 1, -1, 0, 1, 2, 1, 0, 0, 0, 0, 0, -1, -1, 1, 4, 3, 1, -2, 1, 1, 0, -3, -3, 1, 4, 4, -1, -3, -3, 2, 0, -4, -4, 1, 11, 9, 3, -6, -1, 3, 3, -8, -10, 2, 13, 14, -3, -10, -7, 4, 0, -12, -15, 1, 25, 21, 3, -16, -5, 7, 3, -18, -26, 1, 29, 34, -5, -24, -17, 11, 5, -27, -36, 0, 58, 54, 12, -37, -12, 20, 15, -42, -63, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 LINKS FORMULA Given g.f. A(x), then B(x)=x*A(x^5) satisfies 0=f(B(x),B(x^2),B(x^4)) where f(u,v,w)=uv^4+v^3w^2+u^2w^3-u^3vw. PROG (PARI) a(n)=local(B, A, k); if(n<0, 0, k=(3+sqrtint(9+40*n))\10; A= sum(i=-k, k, (-1)^i*x^((5*i^2+3*i)/2), x*O(x^n)) /sum(i=-k, k, (-1)^i*x^((5*i^2+i)/2), x*O(x^n)); B=k=1; while(k<=n, k*=2; B/=A; A=subst(A, x, x^2) +x*O(x^n)); polcoeff(B, n)) (PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k)^-sum(i=0, valuation(k, 2), kronecker(5, k/2^i)), 1+x*O(x^n)), n))} CROSSREFS Cf. A007325. Sequence in context: A016011 A263338 A103522 * A279280 A284093 A284095 Adjacent sequences:  A101105 A101106 A101107 * A101109 A101110 A101111 KEYWORD sign AUTHOR Michael Somos, Dec 01 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 23 21:51 EST 2020. Contains 338603 sequences. (Running on oeis4.)