The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284093 Expansion of Product_{k>=1} (1 + x^(8*k-1)). 2
 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 0, 1, 5, 5, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,39 COMMENTS Number of partitions into distinct parts 8*k-1. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..20000 FORMULA a(n) ~ exp(sqrt(n/6)*Pi/2) / (2^(21/8) * 3^(1/4) * n^(3/4)) * (1 + (11*Pi/(384*sqrt(6)) - 3*sqrt(3/2)/(2*Pi))/sqrt(n)). - Vaclav Kotesovec, Mar 20 2017 G.f.: Sum_{k>=0} x^(k*(4*k + 3)) / Product_{j=1..k} (1 - x^(8*j)). - Ilya Gutkovskiy, Nov 24 2020 MATHEMATICA CoefficientList[Series[Product[(1 + x^(8*k - 1)) , {k, 1, 91}], {x, 0, 91}], x] (* Indranil Ghosh, Mar 20 2017 *) nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 8] == 7, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Mar 20 2017 *) PROG (PARI) Vec(prod(k=1, 91, (1 + x^(8*k - 1))) + O(x^92)) \\ Indranil Ghosh, Mar 20 2017 CROSSREFS Cf. Product_{k>=1} (1 + x^(m*k-1)): A262928 (m=3), A147599 (m=4), A281243 (m=5), A281244 (m=6), A281245 (m=7), this sequence (m=8). Sequence in context: A103522 A101108 A279280 * A284095 A279593 A017867 Adjacent sequences:  A284090 A284091 A284092 * A284094 A284095 A284096 KEYWORD nonn AUTHOR Seiichi Manyama, Mar 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 03:43 EST 2021. Contains 349437 sequences. (Running on oeis4.)