login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284095
Expansion of Product_{k>=0} (1 + x^(8*k+1)).
2
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 0, 1, 4, 5, 2, 0, 0, 0, 0, 1, 5, 7, 3, 0, 0, 0, 0, 1, 5, 8, 5, 1, 0, 0, 0
OFFSET
0,27
COMMENTS
Number of partitions of n into distinct parts congruent to 1 mod 8.
LINKS
FORMULA
a(n) ~ exp(sqrt(n/6)*Pi/2) / (2^(15/8) * 3^(1/4) * n^(3/4)) * (1 + (11*Pi/(384*sqrt(6)) - 3*sqrt(3/2)/(2*Pi))/sqrt(n)). - Vaclav Kotesovec, Mar 20 2017
G.f.: Sum_{k>=0} x^(k*(4*k - 3)) / Product_{j=1..k} (1 - x^(8*j)). - Ilya Gutkovskiy, Nov 24 2020
MATHEMATICA
CoefficientList[Series[Product[(1 + x^(8*k + 1)) , {k, 0, 91}], {x, 0, 91}], x] (* Indranil Ghosh, Mar 20 2017 *)
nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 8] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Mar 20 2017 *)
PROG
(PARI) Vec(prod(k=0, 91, (1 + x^(8*k + 1))) + O(x^92)) \\ Indranil Ghosh, Mar 20 2017
CROSSREFS
Cf. Product_{k>=0} (1 + x^(m*k+1)): A261612 (m=3), A169975 (m=4), A280454 (m=5), A280456 (m=6), A280457 (m=7), this sequence (m=8).
Sequence in context: A101108 A279280 A284093 * A279593 A017867 A127843
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 20 2017
STATUS
approved