login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=0} (1 + x^(8*k+1)).
2

%I #18 Nov 24 2020 10:24:11

%S 1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,2,1,0,0,0,0,0,1,

%T 2,1,0,0,0,0,0,1,3,2,0,0,0,0,0,1,3,3,1,0,0,0,0,1,4,4,1,0,0,0,0,1,4,5,

%U 2,0,0,0,0,1,5,7,3,0,0,0,0,1,5,8,5,1,0,0,0

%N Expansion of Product_{k>=0} (1 + x^(8*k+1)).

%C Number of partitions of n into distinct parts congruent to 1 mod 8.

%H Vaclav Kotesovec, <a href="/A284095/b284095.txt">Table of n, a(n) for n = 0..20000</a>

%F a(n) ~ exp(sqrt(n/6)*Pi/2) / (2^(15/8) * 3^(1/4) * n^(3/4)) * (1 + (11*Pi/(384*sqrt(6)) - 3*sqrt(3/2)/(2*Pi))/sqrt(n)). - _Vaclav Kotesovec_, Mar 20 2017

%F G.f.: Sum_{k>=0} x^(k*(4*k - 3)) / Product_{j=1..k} (1 - x^(8*j)). - _Ilya Gutkovskiy_, Nov 24 2020

%t CoefficientList[Series[Product[(1 + x^(8*k + 1)) , {k, 0, 91}], {x, 0, 91}], x] (* _Indranil Ghosh_, Mar 20 2017 *)

%t nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 8] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* _Vaclav Kotesovec_, Mar 20 2017 *)

%o (PARI) Vec(prod(k=0, 91, (1 + x^(8*k + 1))) + O(x^92)) \\ _Indranil Ghosh_, Mar 20 2017

%Y Cf. Product_{k>=0} (1 + x^(m*k+1)): A261612 (m=3), A169975 (m=4), A280454 (m=5), A280456 (m=6), A280457 (m=7), this sequence (m=8).

%K nonn

%O 0,27

%A _Seiichi Manyama_, Mar 20 2017