login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284097
a(n) = Sum_{d|n, d == 1 (mod 5)} d.
19
1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 12, 7, 1, 1, 1, 17, 1, 7, 1, 1, 22, 12, 1, 7, 1, 27, 1, 1, 1, 7, 32, 17, 12, 1, 1, 43, 1, 1, 1, 1, 42, 28, 1, 12, 1, 47, 1, 23, 1, 1, 52, 27, 1, 7, 12, 57, 1, 1, 1, 7, 62, 32, 22, 17, 1, 84, 1, 1, 1, 1, 72, 43, 1, 1, 1, 77, 12, 33, 1
OFFSET
1,6
LINKS
FORMULA
G.f.: Sum_{k>=0} (5*k + 1)*x^(5*k+1)/(1 - x^(5*k+1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/60 = 0.164493... (A013661 / 10). - Amiram Eldar, Nov 26 2023
MATHEMATICA
Table[Sum[If[Mod[d, 5] == 1, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
PROG
(PARI) for(n=1, 82, print1(sumdiv(n, d, if(Mod(d, 5)==1, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
(Python)
from sympy import divisors
def a(n): return sum([d for d in divisors(n) if d%5==1]) # Indranil Ghosh, Mar 21 2017
CROSSREFS
Cf. Sum_{d|n, d=1 mod k} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), this sequence (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8).
Sequence in context: A140213 A331927 A285483 * A091258 A351568 A174544
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 20 2017
STATUS
approved