login
A174544
A mirrored symmetrical triangle of the Stirling numbers of the second kind.
0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 15, 15, 1, 1, 1, 1, 31, 90, 31, 1, 1, 1, 1, 63, 301, 301, 63, 1, 1, 1, 1, 127, 966, 1701, 966, 127, 1, 1, 1, 1, 255, 3025, 7770, 7770, 3025, 255, 1, 1, 1, 1, 511, 9330, 34105, 42525, 34105, 9330, 511, 1, 1
OFFSET
0,13
COMMENTS
Row Sums are: 1, 2, 3, 4, 11, 34, 156, 732, 3891, 22104, 130421,...
FORMULA
T(n,0) = 1. T(n,k) = A008277(n,k) if 1<=k<=n/2. T(n,k) = T(n,n-k).
EXAMPLE
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 7, 1, 1;
1, 1, 15, 15, 1, 1;
1, 1, 31, 90, 31, 1, 1;
1, 1, 63, 301, 301, 63, 1, 1;
1, 1, 127, 966, 1701, 966, 127, 1, 1;
1, 1, 255, 3025, 7770, 7770, 3025, 255, 1, 1;
1, 1, 511, 9330, 34105, 42525, 34105, 9330, 511, 1, 1;
MATHEMATICA
t[n_, m_, q_] = If[m == 0 || m == n, 1, If[Floor[n/2] >= m, StirlingS2[n, m]*q^ m, StirlingS2[n, n - m]*q^(n - m)]];
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 1, 10}]
CROSSREFS
Sequence in context: A284097 A091258 A351568 * A168423 A350071 A336844
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 22 2010
EXTENSIONS
Formula and NAME cleaned up by R. J. Mathar, Aug 28 2013
STATUS
approved