login
A350071
a(n) = gcd(sigma(n^2), A003961(n^2)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 7, 1, 1, 13, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 1, 1, 7, 3, 1, 1, 1, 1, 1, 3, 121, 1, 1, 13, 1, 1, 1, 21, 1, 1, 1, 3, 1, 3, 1, 3, 1, 7, 1, 1, 1, 3, 1, 3, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1
OFFSET
1,10
FORMULA
a(n) = A342671(n^2).
a(n) = A065764(n) / A350072(n).
MATHEMATICA
f1[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^(2*e); a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (f = FactorInteger[n]), Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Dec 12 2021 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A342671(n) = gcd(sigma(n), A003961(n));
A350071(n) = A342671(n^2);
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 12 2021
STATUS
approved