login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174546
A symmetrical triangle based on Stirling numbers of the second kind :q=3;t(n,m,q)=If[m == 0 Or m == n, 1, If[Floor[n/2] greater than or equal to m, StirlingS2[ n, m]*q^m, StirlingS2[n, n - m]*q^(n - m)]]
0
1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 63, 3, 1, 1, 3, 135, 135, 3, 1, 1, 3, 279, 2430, 279, 3, 1, 1, 3, 567, 8127, 8127, 567, 3, 1, 1, 3, 1143, 26082, 137781, 26082, 1143, 3, 1, 1, 3, 2295, 81675, 629370, 629370, 81675, 2295, 3, 1, 1, 3, 4599, 251910, 2762505, 10333575
OFFSET
0,5
COMMENTS
Row Sums are:
{1, 2, 5, 8, 71, 278, 2996, 17396, 192239, 1426688, 16371611,...}
FORMULA
q=3;
t(n,m,q)=If[m == 0 Or m == n, 1, If[Floor[n/2] greater than or equal to m, StirlingS2[ n, m]*q^m, StirlingS2[n, n - m]*q^(n - m)]]
EXAMPLE
{1},
{1, 1},
{1, 3, 1},
{1, 3, 3, 1},
{1, 3, 63, 3, 1},
{1, 3, 135, 135, 3, 1},
{1, 3, 279, 2430, 279, 3, 1},
{1, 3, 567, 8127, 8127, 567, 3, 1},
{1, 3, 1143, 26082, 137781, 26082, 1143, 3, 1},
{1, 3, 2295, 81675, 629370, 629370, 81675, 2295, 3, 1},
{1, 3, 4599, 251910, 2762505, 10333575, 2762505, 251910, 4599, 3, 1}
MATHEMATICA
t[n_, m_, q_] = If[m == 0 || m == n, 1, If[Floor[n/2] >= m, StirlingS2[n, m]*q^ m, StirlingS2[n, n - m]*q^(n - m)]];
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 1, 10}]
CROSSREFS
Sequence in context: A143086 A327481 A152714 * A134444 A176149 A091442
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 22 2010
STATUS
approved