login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174542
Partial sums of odd Fibonacci numbers (A014437).
1
1, 2, 5, 10, 23, 44, 99, 188, 421, 798, 1785, 3382, 7563, 14328, 32039, 60696, 135721, 257114, 574925, 1089154, 2435423, 4613732, 10316619, 19544084, 43701901, 82790070, 185124225, 350704366, 784198803, 1485607536, 3321919439, 6293134512, 14071876561
OFFSET
1,2
FORMULA
a(2n) = (1/2)*(Fibonacci(3n+2)-1).
a(2n+1) = (1/2)*(Fibonacci(3n+1)+Fibonacci(3n+3)-1).
a(n) = a(n-1)+4*a(n-2)-4*a(n-3)+a(n-4)-a(n-5) for n>4. - Colin Barker, Oct 26 2014
G.f.: x*(x^3-x^2+x+1) / ((x-1)*(x^4+4*x^2-1)). - Colin Barker, Oct 26 2014
From Vladimir Reshetnikov, Oct 30 2015: (Start)
a(n) = ((sin(Pi*n/2)*sqrt(5/phi) - cos(Pi*n/2)/phi^2)/phi^(3*n/2) + (sqrt(5*phi)*sin(Pi*n/2)^2 + phi^2*cos(Pi*n/2)^2)*phi^(3*n/2))/(2*sqrt(5)) - 1/2, where phi=(1+sqrt(5))/2.
E.g.f.: phi^2*cosh(phi^(3/2)*x)/(2*sqrt(5)) + sqrt(phi)*sinh(phi^(3/2)*x)/2 - cos(x/phi^(3/2))/(2*sqrt(5)*phi^2) + sin(x/phi^(3/2))/(2*sqrt(phi)) - exp(x)/2.
(End)
MATHEMATICA
s=0; lst={}; Do[f=Fibonacci[n]; If[OddQ[f], AppendTo[lst, s+=f]], {n, 0, 5!}]; lst
CoefficientList[Series[(x^3 - x^2 + x + 1)/((x - 1) (x^4 + 4 x^2 - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 27 2014 *)
Accumulate[Select[Fibonacci[Range[50]], OddQ]] (* or *) LinearRecurrence[{1, 4, -4, 1, -1}, {1, 2, 5, 10, 23}, 40] (* Harvey P. Dale, Sep 05 2023 *)
PROG
(PARI) Vec(x*(x^3-x^2+x+1)/((x-1)*(x^4+4*x^2-1)) + O(x^100)) \\ Colin Barker, Oct 26 2014
(Magma) &cat[[(1/2)*(Fibonacci(3*n+2)-1), (1/2)*(Fibonacci(3*n+1)+Fibonacci(3*n+3)-1)]: n in [1..30]]; // Vincenzo Librandi, Oct 27 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved